期刊文献+

莫尔应变圆极点法及应变极点特性研究 被引量:1

Study on the Pole Point Method of Mohr Strain Circle and the Characteristics of Strain Pole Point
下载PDF
导出
摘要 极点是根据单元体的应变状态在莫尔应变圆上做出的一个特殊点,通过极点可以获得任意平面的应变状态。为确定莫尔应变圆上的极点,提出了2种方法——平行线法和法线法。采用反证法分别验证了平行线法和法线法确定的应变极点的唯一性,采用几何作图法分别验证了平行线法和法线法确定的应变极点的可靠性。研究表明:2种方法确定的应变极点位于莫尔应变圆的同一条直径上;应力极点与应变极点位于莫尔应力圆与应变圆组成的同心圆的半径上。莫尔应变圆极点法具有简便、准确的优点,避免了复杂的公式计算,是求解岩土工程中的稳定和变形问题及确定单元体复杂应变状态的优选方法。 The pole point on Mohr circle of strain is a point so special that it can help to readily find strains on any specified plane by using diagram instead of complicated computation. In this paper,two methods are put forward to determine the pole point on the Mohr circle of strain,i. e. the parallel line method and the normal line method. On the basis of contradiction method,the uniqueness of strain pole point is proved by parallel line method and normal line method; on the basis of geometric graphical method,the reliability of determining strain pole point by parallel line method and normal line method is verified. Research shows that the two strain pole points determined by the two methods are on a diameter line of the Mohr strain circle. When certain proportional relation is given,the corresponding stress pole point and the strain pole point are on the radius line of the concentric circle consisting of the Mohr stress circle and Mohr strain circle. The strain pole point method is a preferred solution to determine complex strain state of the strain element and the deformations in geotechnical fields.
出处 《长江科学院院报》 CSCD 北大核心 2016年第6期88-93,共6页 Journal of Changjiang River Scientific Research Institute
基金 国家自然科学基金项目(51379118) 山东省土木工程防灾减灾重点实验室开放课题基金项目(CDPM2013KF02) 山东科技大学研究生科技创新基金项目(YC150327)
关键词 莫尔圆 极点法 应力圆 应变圆 唯一性 旋转法 Mohr circle pole point stress strain uniqueness rotation method
  • 相关文献

参考文献12

  • 1TIMOSHENKO S. History of Strength of Materials [ M ]. New York: Dover Publications Inc., 1983.
  • 2ALLISON I. The Pole of the Mohr Diagram [ J ]. Journal of Structural Geology, 1984, 6(3) : 331-333.
  • 3TERZAGHI K. Theoretical Soil Mechanics [ M ]. New York: John Wiely and Sons, 1943: 15-65.
  • 4LAMBE T, WHITMAN R. Soil Mechanics [ M]. New York: John Wiely and Sons, 1969.
  • 5BUDHU M. Soil Mechanics and Foundations (Third Edi- tion) [ M ]. New York : John Wiely and Sons, 2011 : 131 - 185.
  • 6DAS B M. Principles of Geotechnical Engineering ( Sev- enth Edtion) [ M]. India: CL Engineering, 2010.
  • 7HOLTZ R, KOVACS W. An Introduction to Geotechnical Engineering[ M]. New Jersy: Prentice Hall, 1981.
  • 8GERE J M, GOODNO B J. Mechanics of Materials [ M ]. Canada: RPK Editorial Services Inc., 2009:536-616.
  • 9HEARN E J. Mechanics of Materials (Third Edition) [ M ]. UK: Butterworth-Heinemann, 1997 : 220-290.
  • 10HIBBELER R C. Mechanics of Materials [ M ]. New Jer- sy: Prentice Hall, 2010.

二级参考文献23

  • 1赵九江,赵祖耀.材料力学[M].哈尔滨:哈尔滨工业大学,2002:161-175
  • 2粟一凡.材料力学[M].北京:高等教育出版社,1984.
  • 3TIMOSHENKO S. History of strength of materials[M]. New York: Dover publications lnc, 1983.
  • 4ALLISON I. The pole of the Molar diagram[J]. Journal of Structural Geology, 1984, 6(3): 331 - 33.
  • 5TREAGUS S. Mohr circles for strain, simplified[J]. Geological Journal, 1987, 22:119 - 132.
  • 6SARKARINEJAD K, SAMANA B, FAGHIH A. A Mohr circle method for 3D strain measurement using the geometry of no finite longitudinal strain and the Rxz Strain ratio[J]. Journal of Structural Geology, 2011, 33:424 - 432.
  • 7PARRY R. Mohr circles, stress paths and geotechnics[M]. 2nd ed. London: Spon Press, 2004.
  • 8TERZAGHI K. Theoretical soil mechanics[M]. New York: John Wiely and Sons, 1943:15 - 65.
  • 9LAMBE T, WHITMAN R. Soil mechanics[M]. New York: John Wiely and Sons, 1969.
  • 10BUDHU M. Soil mechanics and foundations[M]. 3rd ed. New York: John Wiely and Sons, 2011.

共引文献8

同被引文献2

引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部