摘要
为了研究大输量条件下多相混输管路的流动特性,以水和空气为实验介质,在长江大学多相流实验平台上进行了水平状态的高气液量两相流模拟实验研究。实验采用内径为60 mm、长9.4 m的透明有机玻璃管,并利用高速摄像仪记录实验过程中的流型。通过对实验流型进行整理,将水平管内的气液两相流流型划分为分层流、泡状流、段塞流和环状流,并与典型的Mandhane流型图进行对比分析。另外,对实验范围内的几种典型流型下的压降梯度变化规律进行了研究,泡状流区域压降梯度随气流速的增大而减小,段塞流区域压降梯度随气流速的增大而缓慢增大,环状流区域压降梯度随气流速的增加而继续增大。
In order to study the multiphase pipeline flow characteristics under the condition of high transport volume, taking water and air as experimental mediums in multiphase flow experimental platform of Yangtze University, the two-phase flow simulation experiment of high transport volume was carried out by using 9.4 m length transparent organic glass tube with inner diameter of 60 mm under horizontal condition, and the flow pattern of the experiment was recorded with high-speed camera. Through sorting the experimental flow pattern, the gas-liquid two-phase flow in a horizontal pipe flow pattern was divided into stratified flow, bubble flow, slug flow and annular flow, and they were compared with the typical Mandhane flow pattern map. In addition, pressure drop gradient change rules of several typical flow patterns were studied. The results show that pressure drop gradient in the bubble flow area decreases with the increase of gas velocity, pressure drop gradient in the slug flow area slowly increases with the increase of gas velocity, and the pressure drop gradient in the annular flow area gradient increases with the increase of gas velocity.
出处
《当代化工》
CAS
2016年第5期897-899,共3页
Contemporary Chemical Industry
关键词
大输量
气液两相
流型
压降
high transport volume
gas-liquid two-phase
flow pattern
pressure drop