期刊文献+

基于流形波段选择的高光谱图像分类 被引量:4

Hyperspectral image classification based on manifold band selection
原文传递
导出
摘要 为解决高光谱图像中高维数据和有标记训练样本不足的矛盾导致"维度灾难"问题,提出一种无监督的基于流形学习的波段选择(MLBS)方法。首先通过流形学习方法,得到原始数据的流形嵌入映射;然后通过LASSO优化过程,运用顺向坐标下降算法,得到原始波段对每个流形结构维度的贡献度;最后统计每个波段的贡献度,选取贡献度大的波段形成波段子集。用真实的AVIRIS高光谱图像对算法进行仿真实验的结果表明,本文方法在小样本下的高光谱地物分类识别问题上具有良好的效果。 For solving the "curse of dimensionality" problem. Caused by the contradiction between high dimensional data and insufficient labeled training samples in huperspectral image, this paper presentes an unsupervised manifold learning based band selection (MLBS) method. Firstly, the embedding projection of each pixel is calculated through manifold learning algorithm;secondly, the contribution degree of each dimensional of manifold structure is calculated through a lasso optimization process and coordinate-wise descent algorithm; at last,the contribution degree of each band is calculated, while the bands with large contribution degree form band subset. The proposed band selection approach is experimentally evaluated using real AVIRIS hyperspectral data set. Experimental results in AVIRIS data demonstrate that the proposed algorithm can yield good performance in hyperspectral land-cover classification with small sampies.
出处 《光电子.激光》 EI CAS CSCD 北大核心 2016年第6期670-674,共5页 Journal of Optoelectronics·Laser
基金 国家自然科学基金(61379074) 浙江省自然科学基金(LQ13F020015)资助项目
关键词 高光谱图像 分类 波段选择 流形学习 无监督 hyperspectral image classification band selection manifold learning unsupervised
  • 相关文献

参考文献3

二级参考文献42

  • 1张立燕,谌德荣,陶鹏.基于顶点成分分析的高光谱图像低概率异常检测方法研究[J].宇航学报,2007,28(5):1262-1265. 被引量:10
  • 2谷延锋,刘颖,贾友华,张晔.基于光谱解译的高光谱图像奇异检测算法[J].红外与毫米波学报,2006,25(6):473-477. 被引量:17
  • 3寻丽娜,方勇华,李新.高光谱图像中基于端元提取的小目标检测算法[J].光学学报,2007,27(7):1178-1182. 被引量:27
  • 4Archibald, R., Fann, G., 2007. Feature selection and clas sification of hyperspectral images, with support vector machines. IEEE Geosci. Remote Sens. Lett., 4(4):674-677. [dol: 10.1109/LGRS.2007.905116].
  • 5Bazi, Y., Melgani, F., 2006. Toward an optimal SVM classifi cation system for hyperspectral remote sensing images. IEEE Trans. Geosei. Remote Sens., 44(11):3374-3385. [doi: 10.1109/TGRS.2006.880628].
  • 6Chang, C.C., Lin, C.J., 2001. LIBSVM: a Library for Support Vector Machines. Available from http://www. csie.ntu.edu.tw/-ejlin/libsvm/ Chang, C.I., Du, Q., Sun, T.L., Althouse, M.L.G., 1999.
  • 7A joint band prioritization and band-decorrelation ap proach to band selection for hyperspectral image clas sification. IEEE Trans. Geosei. Remote Sens., 37(6):2631-2641. [doi: 10.1109/36.803411].
  • 8Cheng, Q., Varshney, P.K., Arora, M.K., 2006. Logistic regression for feature selection and soft classification of remote sensing data. IEEE Geosci. Remote Sens. Lett., 3(4):491-494. [doi:10.1109/LGRS.2006.877949].
  • 9Ding, C., He, X., Simon, H.D., 2005. On the Equivalence of Nonnegative Matrix Factorization and Spectral Clus tering. Proc. SIAM Data Mining Conf., p.606-610.
  • 10Fisher, R.A., 1936. The use of multiple measurements in taxonomic problems. Ann. Hum. Genet., 7(2):179-188. [doi:10.1111/j.1469-1809.1936.tb02137.x].

共引文献27

同被引文献36

引证文献4

二级引证文献7

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部