摘要
在分析叶面积指数、降雨量、温度与植被净初级生产力相关关系的基础上,应用Landsat 7卫星影像数据提取研究区的温度、叶面积指数,建立了能反映温度、降雨量对城市森林生态系统植被净初级生产力影响的模型,模拟广州市2013年3月份森林植被净初级生产力。结果表明:该模型模拟的NPP值与前人运用传统方法研究估算的NPP值相比较,精度可以达到91%,证明此模型在区域植被净初级生产力估算方面具有一定的可行性。
The net primary productivity(NPP) of urban forest vegetation is an important index to measure the health status of urban forest ecological system. Its simulation research has the vital significance to the carbon balance monitoring. Remote sensing image data with high spatial resolution and short revisit period is an important data source for accurately simulatingthe NPP. In this paper,based on analyzing thecorrelation between the vegetation NPPand the leaf area index, rainfall, temperature respectively, and by using the Landsat 7 satellite image data to extract out the leaf area index and the temperature of the study area, established a model which can reflect the influence of temperature and rainfall on the vegetation NPP of urban forest ecological system to simulatethe Guangzhou forest vegetation NPP in March of 2013. It revealed that the precision of the NPP value simulated by the model can reach 91% compared with estimated by traditional methods and It is proved estimating the urban forest vegetation NPP by using the model is feasible.
出处
《中南林业科技大学学报》
CAS
CSCD
北大核心
2016年第5期19-25,共7页
Journal of Central South University of Forestry & Technology
基金
国土资源部公益性行业科研专项课题(20131100403)
关键词
净初级生产力
城市森林
遥感
广州市
net primary productivity(NPP)
urban forest
remote sensing
Guangzhou city