期刊文献+

基于社交影响力的推荐算法 被引量:4

A Recommendation Algorithm Based on Social Influence
下载PDF
导出
摘要 社交网站的兴起促使社交推荐成为了推荐系统领域的热门研究方向。微博是一类具有代表性的社交网站,其用户之间以一对多的不对等关系为主,如何为微博用户推荐潜在的关注对象是社交推荐中的一个重要研究点。文中针对微博类社交网站中用户间关系不对等的特点,结合用户间的交互行为信息,提出了一种社交影响力的计算方法,并在此基础上提出基于社交影响力的推荐算法(SIB)。该算法通过计算用户社交影响力矩阵,然后使用K个最近邻(K-Nearest Neighbor,KNN)算法找出目标用户的邻居集合,借助邻居集合帮助推荐。该算法综合考虑了微博社交网站中的两种社交关系,能有效地对微博类社交网站进行个性化推荐。通过在真实数据集上进行实验,证明该算法在微博类社交网站中的推荐效果比单纯的基于用户协同过滤(User-based Collaborative Filtering,UCF)算法有一定程度的提升。 The rise of social networking sites promotes social recommendation becoming the research hotspot in the field of recommender systems. As a representative social network,Weibo has unequal one-to-many relationship between users. How to recommend potential Weibo users concerned is an important research direction in the social recommendation. Aiming at the characteristics of unequal relationship between users in social network of Weibo, combined with the mutual behavior information between users, a computing method of social influence is proposed and on the basis,a SIB algorithm is also presented. By calculating the social influence matrix of user,this algorithm uses the KNN algorithm to find the target user set of neighbors, and helps to recommend with the aid of neighbors set. The algorithra considers the two kinds of social relations for social network in Weibo, which can effectively conduct personalized recommendation for social networking sites in Weibo. The experiment shows that the SIB algorithm can effectively improve the accuracy of recommenda- tion system in social networks compared with UCF algorithm.
出处 《计算机技术与发展》 2016年第6期31-36,共6页 Computer Technology and Development
基金 国家自然科学基金资助项目(60973140 61170276 61373135) 江苏省产学研项目(BY2013011) 江苏省科技型企业创新基金(BC2013027) 江苏省高校自然科学研究重大项目(12KJA520003) 江苏省大学生创新创业训练计划项目(201410293023Z)
关键词 社交网络 微博 社交影响力 协同过滤 推荐算法 social network Weibo social influence collaborative filtering recommendation algorithm
  • 相关文献

参考文献15

  • 1Resinick P, Varian H R. Recommender systems [ J ]. Commu- nications of the ACM, 1997,40(3 ) :56-58.
  • 2Linden G, Smith B, York J. Amazon. com recommendations i- tem-to-item collaborative filtering[ J ]. IEEE Intemet Compu- ting,2003,7( 1 ) :76-80.
  • 3王嫣然,陈梅,王翰虎,张鑫.一种基于内容过滤的科技文献推荐算法[J].计算机技术与发展,2011,21(2):66-69. 被引量:22
  • 4Breese J S, Heckerman D, Kadie C. Empirical analysis of pre- dictive algorithms for collaborative filtering[ C ]//Proceedings of the 14th conference on uncertainty in artificial intelligence. Is. 1. ] :[s.n. ] ,1998:43-52.
  • 5Resniek P, Iakovou N, Sushak M, et al. GroupLens: an open architecture for collaborative filtering of netnews [ C ]//Pro- ceedings of the 1994 computer supported cooperative work conference. [s. 1. ]:Is. n. ] ,1994:175-186.
  • 6Sarwar B, Karypis G, Konstan J. Item-based collaborative fil- tering recommendation algorithms [ C ]//Proceedings of the 10th international conference on world wide web. [ s. 1. ] : [ s. n. ] ,2001:285-295.
  • 7陈克寒,韩盼盼,吴健.基于用户聚类的异构社交网络推荐算法[J].计算机学报,2013,36(2):349-359. 被引量:125
  • 8Chang Pei- Shan, Ting I- Hsien, Wang Shyue - Liang. Towards social recommendation system based on the data from microb-logs[ C]//Proc of international conference on advances in so- cial networks analysis and mining. Is. 1. ] :IEEE,2011:672- 677.
  • 9Jiang Meng, Cui Peng, Wang Fei, et al. Scalable recommenda- tion with social contextual information [ J ]. IEEE Transactions on Knowledge and Data Engineering, 2014,26 ( 11 ) : 2789 - 2802.
  • 10荣辉桂,火生旭,胡春华,莫进侠.基于用户相似度的协同过滤推荐算法[J].通信学报,2014,35(2):16-24. 被引量:149

二级参考文献82

  • 1秦春秀,赵捧未,窦永香.基于用户兴趣的个性化检索[J].情报学报,2005,24(4):449-452. 被引量:7
  • 2吴辉娟,袁方.个性化服务技术研究[J].计算机技术与发展,2006,16(2):32-34. 被引量:20
  • 3罗奇,余英,赵呈领,曹艳.自适应推荐算法在电子超市个性化服务系统中的应用研究[J].通信学报,2006,27(11):183-186. 被引量:12
  • 4吴颜,沈洁,顾天竺,陈晓红,李慧,张舒.协同过滤推荐系统中数据稀疏问题的解决[J].计算机应用研究,2007,24(6):94-97. 被引量:51
  • 5陈健,印鉴.基于影响集的协作过滤推荐算法[J].软件学报,2007,18(7):1685-1694. 被引量:59
  • 6Goldberg D,Nichols D,Oki B,Terry D.Using collaborative filtering to weave an information tapestry.Communications of the ACM,1992,35(12):61-70.
  • 7Resnick P,Iacovou N,Suchak M,Bergstorm P,Riedl J.GroupLens:An open architecture for collaborative filtering of netnews//Proceedings of the 1994 ACM Conference on Computer Supported Cooperative Work.Chapel Hill,North Carolina,United States,1994:175-186.
  • 8Shardanand U,Maes P.Social information filtering:Algorithms for automating "word of mouth"//Proceedings of the SIGCHI Conference on Human Factors in Computing Systems.Denver,Colorado,United States,1995:210-217.
  • 9Hill M,Stead L,Furnas G.Recommending and evaluating choices in a virtual community of use//Proceedings of the SIGCHI Conference on Human Factors in Computing Systems.Denver,Colorado,United States,1995:194-201.
  • 10Sarwar B M,Karypis G,Konstan J A,Riedl J.Application of dimensionality reduction in recommender system-A case study//Proceedings of the ACM WebKDD Web Mining for E-Commerce Workshop.Boston,MA,United States,2000:82-90.

共引文献547

同被引文献32

引证文献4

二级引证文献2

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部