期刊文献+

纹理结构引导的自适应图像修复算法 被引量:2

Adaptive Image Inpainting Algorithm Based on Texture Structure
下载PDF
导出
摘要 利用约束纹理合成的方法来解决大面积缺损图像的修复问题,可以在视觉上获得比较好的效果。而修复过程中的合成顺序,对最后的结果有很大影响。Criminisi提出的基于样本图像的图像修复算法,在前人基础上,对合成顺序给出了解决方案。文中首先对决定合成顺序的优先级进一步做了改进,在数据项中加入结构张量,使图像修复从结构区域向无结构区域填充。其次,根据原图像区域纹理结构信息,使得每一次合成的块的大小自适应变化,这在一定程度上避免了纹理块过小或过大带来的弊端,从而使合成效果更为自然。经过对比实验,文中算法取得了较好的效果。 Taking into account the large defect area of images, the constrained texture synthesis is used to image inpainting. The filling order is important because it has a great influence on the final result. Based on the previous studies,Criminisi algorithm gives a solution to the filling order. Firstly, an improvement is made on the priority of the filling order in this paper. Structure tensor is added to the data term in order to make the filling order is from the structural region to the non-structural region. Secondly, according to the texture structural information, it makes the size of template block change adaptively. To some extent, it avoids the disadvantages caused by the block of fixed size, so that the result is more natural. The contrast experiment shows that the algorithm obtains better visual appearance.
出处 《计算机技术与发展》 2016年第6期40-45,共6页 Computer Technology and Development
基金 国家自然科学基金资助项目(60903136)
关键词 图像修复 纹理合成 结构张量 自适应 image inpainting texture synthesis structure tensor adaptive
  • 相关文献

参考文献16

  • 1Bertalmio M, Sapiro G, CaseUes V, et al. Image inpainting [ C]//Proceedings of the 27th annual conference on computer graphics and interactive techniques. Anaheim, USA: ACM Press ,2000:417-424.
  • 2Chan T, Shen J. Mathematical models for local non-texture in- paintings[J]. SIAM Journal on Applied Mathematics,2002,62 (3) :1019-1043.
  • 3Chan T F,Shen J. Non-texture inpainting by curvature-driven diffusions (CDD) [ J]. Journal of Visual Communication and Image Representation,2001,12 (4) :436-449.
  • 4姜军,卓嘎,王朝霞,涅涛远,冯建尚.以TV模型为例的西藏壁画数字图像修复技术研究[J].电子设计工程,2013,21(3):136-139. 被引量:5
  • 5姜军,王龙业,王朝霞,卓嘎,聂涛远,冯建尚.基于CDD模型的西藏壁画数字图像修复技术研究[J].电子设计工程,2014,22(2):177-179. 被引量:6
  • 6Xu Y, Guo B, Shum H Y. Chaos mosaic : fast and memory effi- cient texture synthesis [ R ]. [ s. l. ] : Microsoft Research, 2000.
  • 7Efros A A, Freeman W T. Image quilting for texture synthesis and transfer[ C ]//Proceedings of the 28th.
  • 8annual conference on computer graphics and interactive techniques. Anaheim, USA : ACM Press ,2001:341-346. Kwatra V, Schodl A, Essa I, et al. Graph-cut textures:image and video synthesis using graph cuts[ J]. ACM Transactions on Graphics,2003,22 (2) :277-286.
  • 9Kanizsa G. Organization in vision[ M]. New York: Praeger, 1979.
  • 10孟春芝,何凯,焦青兰.自适应样本块大小的图像修复方法[J].中国图象图形学报,2012,17(3):337-341. 被引量:32

二级参考文献43

  • 1屈磊,韦穗,梁栋,王年.快速自适应模板图像修复算法[J].中国图象图形学报,2008,13(1):24-28. 被引量:13
  • 2张红英,彭启琮,吴亚东.数字破损图像的非线性各向异性扩散修补算法[J].计算机辅助设计与图形学学报,2006,18(10):1541-1546. 被引量:21
  • 3张红颖,张加万,孙济洲.改进Demons算法的非刚性医学图像配准[J].光学精密工程,2007,15(1):145-150. 被引量:22
  • 4Gonzalez R C,Woods R E.数字图像处理(英文版)[M].2版.北京:电子工业出版社,2002.
  • 5Buades A,CoU B,Morel J.On image denoising methods,Technical Report 2005-15[R].CMLA,2004.
  • 6Buades A, Coil B, Morel J.Neighborhood filters and PDE' s, Technical Report 2005-04[R].CMLA, 2004.
  • 7Buades A, Coll B,Morel J.Image denoising by non local averaging[C]//IEEE Computer Society Conference on Computer Vision and Pattern Recognition,2005.
  • 8Weichert J.Scale-space properties of nonlinear diffusion filtering with a diffusion tensor[R].Laboratory of Technomathematies, University of Kaiserslautern,Germany, 1994.
  • 9Weichert J.Anisotropic diffusion in image processing[D].Kaiserslautem : University of Kaiserslautem, 1996.
  • 10Weichert J.Coherence-enhancing diffusion filtering[J].Internationl Journal of Computer Vision, 1999.

共引文献47

同被引文献22

引证文献2

二级引证文献2

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部