期刊文献+

LSCF-GDC氧电极固体氧化物电堆高温蒸汽电解制氢性能研究 被引量:2

Performance of Solid Oxide Electrolysis Stack with LSCF-GDC Oxygen Electrodes in Hydrogen Production from High Temperature Steam
下载PDF
导出
摘要 为研究基于LSCF-GDC氧电极的固体氧化物电解池堆的电解性能,自制了30单元(10 cm×10 cm)的平板式电解电堆,通过改变固体氧化物电解池堆的操作温度、水蒸气含量、气体流量等条件,记录不同条件下电解的极化曲线。分析操作条件对高温电解水蒸气极化的影响,并计算电解制氢的系统效率。结果表明较高的温度、水蒸气含量、水蒸气流量,以及氧电极空气的通入有利于降低过电位;在800℃,通入6 L×min^(-1) 90%湿度的氢气,电解电压为1.27 V时,系统效率达到最大值80.8%,此时电堆的产氢速率为4.57 L×min^(-1)。 A 30-cell(10 cm×10 cm) solid oxide electrolysis stack was prepared to study high temperature steam electrolysis performance of solid oxide electrolysis stack based on LSCF-GDC oxygen electrodes. Hydrogen production was investigated under different temperatures, electrode gas contents and flow rates, and the effects of experiment conditions on the polarization of high temperature steam electrolysis were analyzed, with electrolysis efficiency calculated. Experimental results show that higher operation temperature, steam concentration and gas flow rates, and oxygen electrode feeding with air are helpful in reducing electrolysis over potential. The maximum efficiency of 80.8% is achieved under conditions of 800℃, 6 L×min^-1 of 90% RH hydrogen gas and 1.27 V electrolytic voltage, and the hydrogen production rate is 4.57 L·min^-1.
出处 《高校化学工程学报》 EI CAS CSCD 北大核心 2016年第3期575-581,共7页 Journal of Chemical Engineering of Chinese Universities
基金 国家自然科学基金(U1462112) 国际合作项目(2013DFG41460 2013DFG60080) 中国国家重点基础科学研究项(2012CB2154 01) 国家高技术研究发展项目(2013AA110202)
关键词 固体氧化物电解池 电堆 极化 系统效率 solid oxide electrolysis cell stack polarization system efficiency
  • 相关文献

参考文献23

  • 1Laguna-Bercero M A.Recent advances in high temperature electrolysis using solid oxide fuel cells:A review[J].Journal of Power Sources,2012,203:4-16.
  • 2张志勇,崔群,王海燕,黄冬,姚虎卿.甲醇水蒸汽转化制氢Cu_1Zn_1Al_(3.2)催化剂研究[J].高校化学工程学报,2007,21(2):251-256. 被引量:2
  • 3张璇,付国家,田红景,郭庆杰.污泥基载体负载Co基催化剂催化NaBH_4水解制氢反应性能研究[J].高校化学工程学报,2013,27(6):1020-1026. 被引量:4
  • 4刘明义,于波,徐景明.固体氧化物电解水制氢系统效率[J].清华大学学报(自然科学版),2009(6):868-871. 被引量:43
  • 5Laguna-Bercero M A,Campama R,Larrea A.Electrolyte degradation in anode supported microtubular yttria stabilized zirconia-based solid oxide steam electrolysis cells at high voltages of operation[J].Journal of Power Sources,2011,196(21):8942-8947.
  • 6Chen K,Jiang S P.Failure mechanism of(La,Sr)Mn O3 oxygen electrodes of solid oxide electrolysis cells[J].International Journal of Hydrogen Energy,2011,36(17):10541-10549.
  • 7Keane M,Mahapatra M K,Verma A.LSM-YSZ interactions and anode delamination in solid oxide electrolysis cells[J].International Journal of Hydrogen Energy,2012,37(22):16776-16785.
  • 8Kim-Lohsoontorn P,Bar J.Electrochemical performance of solid oxide electrolysis cell electrodes under high-temperature coelectrolysis of steam and carbon dioxide[J].Journal of Power Sources,2011,196(17):7161-7168.
  • 9Hjalmarsson P,Sun X F,Liu Y L.Influence of the oxygen electrode and inter-diffusion barrier on the degradation of solid oxide electrolysis cells[J].Journal of Power Sources,2013,223:349-357.
  • 10kim S,Choi G M.Stability of LSCF electrode with GDC interlayer in YSZ-based solid oxide electrolysis cell[J].Solid State Ionics,2014,262:303-306.

二级参考文献22

  • 1秦建中,张元东.甲醇裂解制氢工艺与优势分析[J].玻璃,2004,31(5):29-32. 被引量:2
  • 2孙党莉.甲醇蒸汽转化制氢和二氧化碳技术[J].甲醇与甲醛,2005(1):29-31. 被引量:2
  • 3何广利,丁信伟,由宏新,Abuliti Abudula.常规流场下各向异性扩散层对质子交换膜燃料电池(PEMFC)性能影响[J].高校化学工程学报,2005,19(6):818-823. 被引量:3
  • 4王书明,蒋利军,刘晓鹏,王树茂.硼氢化钠催化水解供氢的研究[J].电源技术,2006,30(10):810-812. 被引量:6
  • 5Herring J S, O'Brien J E, Stoots C M, et al. Progress in high-temperature electrolysis for hydrogen production using planar SOFC technology[J].Int J Hydrogen Energy, 2007, 32: 440-450.
  • 6Shin Yj, Park W, Chang J, et al. Evaluation of the high temperature electrolysis of steam to produce hydrogen [J].Int J Hydrogen Energy, 2007, 32:1486 - 1491.
  • 7Mueller-Langera F, Tzimasb E, Kaltschmitt M, et al, Techno-economic assessment of hydrogen production processes for the hydrogen economy for the short and medium term[J]. Int J Hydrogen Energy, 2007, 32: 3797 - 3810.
  • 8Kothari R, Budhdhi D, Sawhney R L. Comparison of environmental and economic aspects of various hydrogen production methods [J]. Renew Sust Energ Rev, 2008, 12: 553 - 563.
  • 9Dean J A. Lange's Handbook ol Chemistry[M]. 13th ed, New York: McGraw Hill Book Company, 1985.
  • 10Jensen S H, Larsen P H, Mogensen M. Hydrogen and synthetic fuel production from renewable energy sources [J]. Int J Hydrogen Energy, 2007, 32:3253 - 3257.

共引文献46

同被引文献18

引证文献2

二级引证文献17

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部