期刊文献+

基于改进遗传算法的钣金折弯自动工序规划 被引量:4

Automatic procedure planning based on an improved genetic algorithm for sheet metal bending
下载PDF
导出
摘要 为了提高钣金折弯工序规划的效率,需要保证在不干涉的前提下,为每个工步选择合适模具,使得模具更换、板料的掉头和翻转次数尽可能少。为此,采用一种改进的高效遗传算法对折弯工序进行优化设计。该方法将发生干涉的工序位置引入适值的计算,在初始种群中快速进化出更优个体,同时为了提高遗传算法的收敛速度,将每一代中的最优个体直接保存到下一代中。实验结果表明该算法相对传统方法更具有高效性,能够快速得到近似最优解的工序方案。 In order to ensure the efficiency of process planning, it needs to choose the appropriate tools for each step to make the number of tool, tool changes, part turn around and flip - overs minimal on the premise of non -interference. In this paper, an improved efficient genetic algorithm is developed to optimize the design of the bending procedure planning, which introduces the step position of interference to calculate the fit- ness and evolves the better individual in the initial population. Meanwhile, for the sake of improving the convergence rate, this algorithm saves the best solution of current generation to next generation. The re- sults show that the algorithm is highly efficient and can quickly obtain the approximate optimal sequences.
出处 《制造技术与机床》 北大核心 2016年第6期98-102,共5页 Manufacturing Technology & Machine Tool
基金 高档数控机床与基础制造装备国家科技重大专项(2014ZX04009011)
关键词 折弯 遗传算法 工序规划 bending genetic algorithm process planning
  • 相关文献

参考文献8

  • 1Inui M,Terakado H.Fast bending sequence planning for progressive press-working[C].Assembly and Task Planning,1999.(1SATP99)Proceedings of the 1999 IEEE International Symposium on.IEEE,1999:344-349.
  • 2Duflou J,Kruth J P,Van Oudheusden D.Algorithms for the design verification and automatic process planning for bent sheet metal parts[J].CIRP Annals-Manufacturing Technology,1999,48 (1):405-408.
  • 3Carlos Rico.J M Gonz(a)ez,S Meteos,et al.Automatic determination of bending sequences for sheet metal parts with parallel bends[J].International Journal of Production Research,2003,41 (14):3273-3299.
  • 4Thanapandi C M,Walairacht A,Periasamy T,et al.Preprocessor to im prove performance of GA in determining bending process for sheet metal industry:foundations of intelligent systems[M].Springer Berlin Heidelberg,2002:362-373.
  • 5Joost R Duflou,Jozsef Vancza,Richard Aerens.Computer aided process planning for sheet metal bending:a state of the art[J].Computers in Industry,2005,56(7):747-771.
  • 6Kannan T R,Shunmugam M S.Planner for sheet metal components to obtain optimal bend sequence using a genetic algorithm[J].International Journal of Computer Integrated Manufacturing,2008,21 (7):790-802.
  • 7Farsi M A,Arezoo B.Development of a new method to determine bending sequence in progressive dies[J].The International Journal of Advanced Manufacturing Technology,2009,43 (1-2):52-60.
  • 8王飞,游有鹏.基于遗传算法的板金自由折弯工序的优化设计[J].机械科学与技术,2011,30(6):991-995. 被引量:3

二级参考文献9

  • 1马莎,王运赣.板材折弯弯曲工序的计算机辅助自动生成[J].华中理工大学学报,1994,22(12):74-77. 被引量:1
  • 2Inui M, et al. Fast bending sequence planning for progressive press-working[ A]. Proceedings of 1999 IEEE International Symposium on Assembly and Task Planning[ C ], Proto, Por- taga] - July 1999,344 - 349.
  • 3Rico J C, et al. Automatic determination of bending sequences for sheet metal parts with parallel bends[ J]. International Journal of Production Research, 2003,41 (14) :3273 - 3299.
  • 4Thanapandi C M, et al. Multi-component genetic algorithm for generating best bending sequence and tool selection in sheet metal parts[ A]. Proceedings of the 2001 IEEE International Confer. ence on Robotics and Automation[ C ], Seoul, Korea, 2001, 830 - 835.
  • 5Kannan T R, Shunmugam M S. Planner for sheet metal compo- nents to obtain optimal bend sequence using a genetic algorithm [ J ]. International Journal of Computer Integrated Manufac- turing, 2008,21 ( 7 ) :790 - 802.
  • 6Farsi M A, Arezoo B. Development of a new method to determine bending sequence in progressive dies [ J ]. The International Journal of Advanced Manufacturing Technology, 2009,43 ( 1 -2) :52 -60.
  • 7Kim J H, et al. Development of a process sequence determination technique by fuzzy set theory for an electric product with piercing and bending operation [ J ]. The International Journal of Ad- vanced Manufacturing Technology, 2006, 31 ( 5 - 6 ) : 450 - 464.
  • 8Li X Y, et al. Optimization of flexible process planning by genetic programming [ J ] . The International Journal of Advanced Manufacturing Technology, 2008,38 : 143 - 153.
  • 9Wang Z J, Tian J. The research about integration of process plan- ning and production scheduling based on genetic algorithm [ J ]. International Conference on Computer Science and Software Engineering, CSSE 2008,1:9 - 12.

共引文献2

同被引文献21

引证文献4

二级引证文献4

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部