期刊文献+

基于改进布尔约减级数分层的大数据流滞后相关性挖掘方法

Lag Correlation Mining Method Based on Improved Boolean Reduction and Layered Series for Big Data Stream
下载PDF
导出
摘要 为了提高大数据流滞后相关性序列挖掘效率,提出基于改进布尔约减级数分层的大数据流滞后相关性挖掘方法.该方法根据原数据流两段序列的序列均值对大数据流序列进行布尔变换,有效降低布尔约减计算开销.通过序列元素转换及还原,缩减序列元素的数目,克服传统算法在滞后相关性计算时需要计算所有数据流序列元素之间滞后相关性的弊端.实验表明,文中方法可有效减少运算时间,在保证精度的同时提高运算效率. To enhance the efficiency of lag correlation sequences mining for big mining method based on Boolean reduction and layered series is proposed data stream, a lag correlation in this paper. Firstly, by two sequence averages of the original data stream, the big data stream sequence is transformed by the improved Boolean to effectively decrease the Computational cost of Boolean reduction. Secondly, through conversion and reduction of sequence elements, the number of the sequence element is reduced. And the proposed method overcomes the drawback of the traditional algorithm in computing lag correlations of all sequence elements. The experiments show the effective reduction in computational time and obvious improvement in computational accuracy of the proposed method.
出处 《模式识别与人工智能》 EI CSCD 北大核心 2016年第5期455-463,共9页 Pattern Recognition and Artificial Intelligence
基金 国家自然科学基金项目(No.F020806) 辽宁省自然科学基金项目(No.201202119) 辽宁省科学计划项目(No.2013405003) 大连市科技计划项目(No.2013A16GX116)资助~~
关键词 改进布尔约减 大数据流 滑动窗口 滞后相关性 级数分层 Improved Boolean Reduction, Big Data Stream, Sliding Window, Lag Correlation,Layered Series
  • 相关文献

参考文献16

  • 1MUTHUKRISHNAN S. Data Streams: Algorithms and Applications. Foundations and Trends in Theoretical Computer Science, 2005, 1(2): 117-236.
  • 2MOUSTAFA A, ABUELNASR B, ABOUGABAL M S. Efficient Mining Fuzzy Association Rules from Ubiquitous Data Streams. Alexandria Engineering Journal, 2015, 54(2): 163-174.
  • 3ZHU Y Y, SHASHA D. StatStream: Statistical Monitoring of Thousands of Data Streams in Real Time // Proc of the 28th International Conference on Very Large Data Bases. Hong Kong, China, 2002: 358-369.
  • 4SAKURAI Y, PAPADIMITRIOU S, FALOUTSOS C. BRAID: Stream Mining through Group Lag Correlations[EB/OL]. [2014-11-10]. http://www.cs.cmu.edu/~christos/PUBLICATIONS/sigmod05-braid.pdf.
  • 5SAKURAI Y, FALOUTSOS C, PAPADIMITRIOU S. Fast Discovery of Group Lag Correlations in Streams. ACM Trans on Knowledge Discovery from Data, 2010, 5(1). DOI: 10.1145/1870096.1870101.
  • 6COLE R, SHASHA D, ZHAO X J. Fast Window Correlations over Uncooperative Time Series // Proc of the 11th ACM SIGKDD International Conference on Knowledge Discovery in Data Mining. Chicago, USA, 2005: 743-749.
  • 7ZHANG T C. Study on Correlation Analysis and Mining in Real-Time Data Streams. Ph.D Dissertation. Shenyang, China: Northeastern University, 2008.
  • 8BABCOCK B, BABU S, DATAR M, et al. Models and Issues in Data Stream Systems // Proc of the 21st ACM SIGMOD-SIGACT-SIGART Symposium on Principles of Database Systems. Madison, USA, 2012: 1-16.
  • 9HO S S. A Martingale Framework for Concept Change Detection in Time-Varying Data Streams // Proc of the 22nd International Confe-rence on Machine Learning. Bonn, Germany, 2005: 321-327.
  • 10DVALOS A, SHA N J. Estimating Intraclass Correlation Coefficient and Identifying Influential Observations under One-Way Random Effects Model. Communications in Statistics-Simulation and Computation, 2014, 43(10): 2374-2389.

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部