摘要
为了提高大数据流滞后相关性序列挖掘效率,提出基于改进布尔约减级数分层的大数据流滞后相关性挖掘方法.该方法根据原数据流两段序列的序列均值对大数据流序列进行布尔变换,有效降低布尔约减计算开销.通过序列元素转换及还原,缩减序列元素的数目,克服传统算法在滞后相关性计算时需要计算所有数据流序列元素之间滞后相关性的弊端.实验表明,文中方法可有效减少运算时间,在保证精度的同时提高运算效率.
To enhance the efficiency of lag correlation sequences mining for big mining method based on Boolean reduction and layered series is proposed data stream, a lag correlation in this paper. Firstly, by two sequence averages of the original data stream, the big data stream sequence is transformed by the improved Boolean to effectively decrease the Computational cost of Boolean reduction. Secondly, through conversion and reduction of sequence elements, the number of the sequence element is reduced. And the proposed method overcomes the drawback of the traditional algorithm in computing lag correlations of all sequence elements. The experiments show the effective reduction in computational time and obvious improvement in computational accuracy of the proposed method.
出处
《模式识别与人工智能》
EI
CSCD
北大核心
2016年第5期455-463,共9页
Pattern Recognition and Artificial Intelligence
基金
国家自然科学基金项目(No.F020806)
辽宁省自然科学基金项目(No.201202119)
辽宁省科学计划项目(No.2013405003)
大连市科技计划项目(No.2013A16GX116)资助~~
关键词
改进布尔约减
大数据流
滑动窗口
滞后相关性
级数分层
Improved Boolean Reduction, Big Data Stream, Sliding Window, Lag Correlation,Layered Series