期刊文献+

最小二乘蒙特卡洛美式期权定价的GPU实现 被引量:3

Implementation of the least squares Monte-Carlo American option pricing on GPU
下载PDF
导出
摘要 蒙特卡洛模拟法常用来进行期权定价,但此算法存在运算量过大的问题.利用图形处理器(GPU)超强计算能力实现美式期权定价,在GPU上,首先优化实现了均匀随机数生成器,然后利用Box-Muller随机数转换算法产生随机数,最后优化实现了最小二乘蒙特卡洛模拟法的美式期权模拟定价系统.测试结果表明,GPU实现的最小二乘蒙特卡洛美式期权定价对比CPU的实现加速比最高达到了16.1.利用GPU的编程技术以更小的硬件代价,更高的执行效率,更好地完成由CPU完成的传统任务,较好地解决了蒙特卡洛模拟法运算量过大的问题,充分挖掘了GPU的通用计算潜力. More often than not Monte-Carlo is connected with option pricing,but it is burdened with calculations.While GPU,with its stupendous calculating ability,can realize American option pricing.First of all,Mersenne twister uniform random number generator is optimized;secondly,Box-Muller conversion algorithm is optimized to realize the random number;lastly,American options pricing simulation system of the Least Squares Monte-Carlo is optimized as well as.The test indicates that the speedup ratio,GPU implementation of the least squares Monte-Carlo American option pricing is 16.1respectively,compared to CPU.Thus programming technique of GPU can be used to deal with the traditional tasks more effectively,making use of its calculating advantage instead of facing the overmuch calculating problems like Monte-Carlo.
出处 《华中师范大学学报(自然科学版)》 CAS 北大核心 2016年第3期343-348,共6页 Journal of Central China Normal University:Natural Sciences
基金 湖北省科技支撑计划项目(2015BAA082)
关键词 图形处理器 期权定价 最小二乘法 蒙特卡洛 GPU option pricing LSM Monte-Carlo
  • 相关文献

参考文献11

  • 1李大禹,胡立发,穆全全,宣丽.GPU计算液晶自适应光学波前重构的并行性研究[J].液晶与显示,2007,22(5):572-575. 被引量:7
  • 2秦华,周沫,察豪,左炜.软件雷达信号处理的多GPU并行技术[J].西安电子科技大学学报,2013,40(3):145-151. 被引量:18
  • 3NORIYUKI F. Dense matrix-vector multipli-cation on the CU DA Architecture [J]. Parallel Processing Letters, 2008, 18(4) : 511-530.
  • 4STONE J E, HARDY D J, Utimtsev I S. GPU-aeeelerated molecular modeling coming of age[J]. Journal of Molecular Graphics and Modeling, 2010, 29(2) : 116-125.
  • 5BOYLE P. Options: A Monte Carlo approach[J]. Journal of Financial Economics,1997, 4(3) :323-338.
  • 6TILLEY J. Valuing american optiongs in a path simulation Mode[J]. Transactions of the Society of Actuaries, 1993, 45 (83) :83-104.
  • 7LONSTAFF F A, SCHWARTZ E S. Valuating American options by simulation: a simple least squares approach[-J~. Review of Financial Studies, 2001, 14(3) :113-147.
  • 8MATTP.GPU精粹2[M].北京:清华大学出版社,2007517-520.
  • 9HUBERTN.GPU精粹3[M].北京:清华大学出版社2010:613-630.
  • 10BOYLE P, BROADIE M, GLASSERMAN P. Monte Carlo methods for security pricing[J~. Journal of Economic Dy- namics and Control, 1997, 21(8):1267-1321.

二级参考文献19

  • 1吴恩华,柳有权.基于图形处理器(GPU)的通用计算[J].计算机辅助设计与图形学学报,2004,16(5):601-612. 被引量:227
  • 2刘永军,胡立发,曹召良,李大禹,穆全全,鲁兴海,宣丽.位相可控液晶空间光调制器的研究[J].光子学报,2005,34(12):1799-1802. 被引量:28
  • 3李静,邹忠飞,乌日娜,宋静,宣丽.柔性双官能团聚合物制备网络稳定铁电液晶器件[J].液晶与显示,2007,22(1):6-10. 被引量:8
  • 4彭增辉,张伶莉,刘永刚,宣丽.一种共价键结构的高稳定性自组装光控取向膜[J].液晶与显示,2007,22(2):115-118. 被引量:1
  • 5Michael Guthe,ákos Balázs.Reinhard Klein:GPU-based trimming and tessellation of NURBS and T-Spline surfaces[J].ACM Trans.Graph.,2005,24(3):1016-1023.
  • 6Krüger Westermann.Linear algebra operators for GPU implementation of numerical algorithms[J].ACM Transactions on Graphics,2003,22(3):908-916.
  • 7Mark Harris.Fast Fluid Dynamics Simulation on the GPU[M].New York:Addison-Wesley,2004.
  • 8Hillesland K E,Molinov S,Grzeszczuk R.Nonlinear optimization framework for image-based modeling on programmable graphics hardware[J].ACM Transactions on Graphics,2003,22(3):925-934.
  • 9Govindaraju Naga K,Henson Michael,Lin Ming C,et al.Interactive visibility ordering and transparency computations among geometric primitives in complex environments[C]//ACM Symposium on Interactive 3D Graphics and Games,New York:ACM Press,2005.
  • 10Govindaraju N K,Lloyd B,Wang W,et al.Fast computation of database operations using graphics processors[C]//Proceedings of the ACM SIGMOD,New York:ACM Press,2004:215-226.

共引文献23

同被引文献9

引证文献3

二级引证文献3

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部