期刊文献+

基于El-Nabulsi模型的分数阶Lagrange系统的Lie对称性与守恒量 被引量:3

Lie symmetry and conserved quantity of fractional Lagrange system based on El-Nabulsi models
下载PDF
导出
摘要 研究基于El-Nabulsi模型的分数阶Lagrange系统的Lie对称性与守恒量。基于按Riemann-Liouville积分拓展的类分数阶变分问题导出El-Nabulsi模型的D'Alembert-Lagrange原理,得到系统的运动微分方程;给出分数阶Lie对称性的定义和判据,建立了Lie对称性确定方程,并提出广义Hojman定理,给出广义Hojman守恒量存在的条件及其形式;最后,建立了广义Noether定理,给出分数阶Lie对称性导致Noether守恒量的条件及其形式,并给出两个算例以说明结果的应用。 The Lie symmetry and the conserved quantity of fractional Lagrange system based on ElNabulsi models are studied. Firstly,the D'Alembert-Lagrange principle of the El-Nabulsi models is deduced based on the fractional action-like variational problem which is expanded by the Riemann-Liouville integral,and the differential equations of motion of the system are obtained. Secondly,the definition and the criterion of the Lie symmetry are given,the determination equations of the Lie symmetry of the system are established,and the generalized Hojman theorem is put forward. At the same time,the existence condition and the form of the generalized Hojman conserved quantity are obtained. Then,the generalized Noether theorem is established,the existence condition and the form of the Noether conserved quantity led by the Lie symmetry are given. Finally,two examples are given to illustrate the application of the results.
作者 张孝彩 张毅
出处 《中山大学学报(自然科学版)》 CAS CSCD 北大核心 2016年第3期97-101,105,共6页 Acta Scientiarum Naturalium Universitatis Sunyatseni
基金 国家自然科学基金资助项目(11272227 11572212) 江苏省普通高校研究生科研创新计划资助项目(KYZZ_0350) 苏州科技大学研究生科研创新计划资助项目(SKCX14_058)
关键词 分数阶Lagrange系统 El-Nabulsi模型 LIE对称性 守恒量 fractional Lagrange system El-Nabulsi model Lie symmetry conserved quantity
  • 相关文献

参考文献18

二级参考文献123

共引文献276

同被引文献31

引证文献3

二级引证文献2

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部