期刊文献+

非高斯噪声环境下基于RLS的稀疏信道估计算法 被引量:1

Recursive least square based sparse channel estimation under non-Gaussian noise background
下载PDF
导出
摘要 现有的信道估计算法大多是基于高斯噪声模型假设。然而在实际无线通信环境中,常常出现脉冲噪声使得噪声不再满足高斯模型,而是满足一种广义高斯分布(GGD)噪声模型。采用传统的自适应信道估计算法(如递归最小二乘(RLS)算法)无法抑制这种非高斯噪声的干扰。对此提出一种可抑制非高斯噪声干扰的RLS信道估计算法。该算法通过在标准RLS算法中引入两种稀疏约束函数(L1-范数和L0-范数)来有效地挖掘稀疏结构信息。通过蒙特卡罗仿真,验证了提出的信道估计算法的估计性能比标准RLS算法更好。 Most of the proposed channel estimation algorithms are based on the assumption of Gaussian noise model. In actual wire-less communication environment, however, the existence of impulse noise makes it no longer satisfy the Gaussian noise model, but meet the generalized Gaussian distribution( GGD) noise model. The traditional adaptive channel estimation algorithm, such as recursion least square( RLS) algorithm, cannot suppress the non- Gaussian noise interference. Under this background, a RLS channel estimation algorithm, which inhibits the non- Gaussian noise interference, is proposed. The proposed algorithm exploits sparse structure informa-tion effectively by introducing two kinds of sparse constraint functions( L1-norm and L0-norm) into the standard RLS algorithm.The Monte Carlo simulation results show that the proposed algorithm has the better estimation performance than the standard RLS.
出处 《电子技术应用》 北大核心 2016年第6期109-112,共4页 Application of Electronic Technique
基金 国家自然科学基金(61501223)
关键词 广义高斯噪声分布 稀疏信道估计 递归最小二乘法 generalized Gaussian distribution sparse channel estimation recursive fast square algorithm
  • 相关文献

参考文献14

  • 1CHEN Y, GU Y, HERO A O.Sparse EMS for system identification[C].Acoustics:Speech and Signal Processing, 2009 : 3125-3128.
  • 2GUI G,PENG W,ADACHI F.Improved adaptive sparse channel estimation based on the least mean square algorithm[C].In Wireless Communications and Networking Conference(WCNC), 2013.
  • 3TAHERI O, VOROBYOV S.Sparse channel estimation with L P-norm and reweighted L squares [ C ]. Acoustics : Speech (ICASSP), 2011.
  • 41-norm penalized least mean and Signal Processing GUI G, MEHBODNIYA A,ADACHI F.Adaptive sparse channel estimation using re-weighted zero-attracting normalized least mean fourth[C].In Communications inChina(ICCC), 2013.
  • 5GUI G, XU L,ADACHI F.Extra gain: Improved sparse channel estimation using reweighted ll-norm penalized LMS/F algorithm[C].China : ICCC, 2014.
  • 6GUI G,XU L,ADACHI F.RZA-NLMF algorithm-based adaptive sparse sensing for realizing compressive sensing[J]. EURASIP Journal on Advances in Signal Processing, 2014(1): 1-10.
  • 7GUI G, ADACHI F.Sparse least mean fourth filter with zero- attracting 11 - norm constraint [ C ]. In Information, Communications and Signal Processing(ICICS), 2013.
  • 8GUI G,MEHBODNIYA A,ADACHI F.Sparse LMS/F algo- rithms with application to adaptive system identification[C]. Wireless Communications and Mobile Computing ,2013.
  • 9GUI G, MEHBODNIYA A,ADACHI F.Least mean square/ fourth algorithm for adaptive sparse channel estimation[C]. In Personal Indoor and Mobile Radio Communications (PIMRC), 2013.
  • 10EKSIOGLU E M.Group sparse RIS algorithms[J]. Inter- national Journal of Adaptive Control and Signal Processing, 2014,28 (12) : 1398-1412.

同被引文献5

引证文献1

二级引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部