期刊文献+

基于随机森林模型的短时交通流预测方法 被引量:13

The model of short term traffic flow prediction based on the random forest
下载PDF
导出
摘要 短时交通流的准确高效预测对于智能交通系统的应用十分关键,但较强的非线性和噪声干扰使其对模型的灵活性要求较高,并且还需在尽可能短的时间内处理大量的数据。因此,讨论了用随机森林模型对短时交通流进行预测,该模型具有比单棵树更强的泛化能力,参数调节方便,计算高效,且稳定性好。观察交通流数据在较长时间跨度上的变化后,提取出主要特征变量构造输入空间,对模型进行训练后,在测试集上的预测准确率约为94%。与目前广泛使用的支持向量机模型进行对比分析,结果显示随机森林预测不仅准确率稍好于支持向量机,而且在效率、易用性及未来应用的扩展上都要优于支持向量机。 The short term traffic flow prediction is very important to the application of intelligent traffic system( ITS),but it needs more flexible model for the strong nonlinear and noisy and processes lots of data in short time. This article discusses the random forest model for the prediction of short term traffic flow. The model has characters such as stronger generalization,easy to adjust the parameter,effective computation and quality stability. It extracts the principal features as the variables to form input space after observing the variation of traffic flow in the longer term. The prediction accuracy of the model on the test set is 94% after the model trained on the training set. Compared with the popular support vector machine( SVM),the random forest has better accuracy prediction. And the random forest is better than SVM on the efficiency,usability and the extension of future usage.
作者 程政 陈贤富
出处 《微型机与应用》 2016年第10期46-49,共4页 Microcomputer & Its Applications
关键词 智能交通 交通流预测 决策树 随机森林 支持向量机 intelligent traffic system traffic flow prediction decision tree random forest support vector machine
  • 相关文献

参考文献10

  • 1VLAHOGIANNI E I,KARLAFTIS M G,GOLIAS J C.Shortterm traffic forecasting:where we are and where we’re going[J].Transportation Research Part C Emerging Technologies,2014,43(1):3-19.
  • 2陆海亭,张宁,黄卫,夏井新.短时交通流预测方法研究进展[J].交通运输工程与信息学报,2009,7(4):84-91. 被引量:35
  • 3CHEN P H,LIN C J,SCHOLKOPF B.A tutorial onν-support vector machines[J].Applied Stochastic Models in BusinessandIndustry,2005,21(2):111-136.
  • 4BREIMAN L.Random forests[J].Machine Learning,2001,45(1):5-32.
  • 5BREIMAN L,FRIEDMAN J,CHARLES J S,et al.Classification and Regression Trees[M].US:Chapman and Hall,1984.
  • 6HASTIE T,TIBSHIRANI R,FRIEDMAN J.The element of statistical learning:data mining,inference,and prediction.(2th ed)[M].US:Springer,2009.
  • 7MCKINNEY W.Python for data analysis[M].US:O’Reilly,2012.
  • 8朱征宇,刘琳,崔明.一种结合SVM与卡尔曼滤波的短时交通流预测模型[J].计算机科学,2013,40(10):248-251. 被引量:33
  • 9傅贵,韩国强,逯峰,许子鑫.基于支持向量机回归的短时交通流预测模型[J].华南理工大学学报(自然科学版),2013,41(9):71-76. 被引量:90
  • 10BERGSTRA J,BENGIO Y.Random searchforhyper-parameter optimization[J].Journal of Machine Learning Research,2012,13(1):281-305.

二级参考文献38

共引文献152

同被引文献105

引证文献13

二级引证文献97

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部