期刊文献+

模糊近邻密度聚类与重采样的迁移学习算法 被引量:3

Transfer Learning with Fuzzy Neighborhood Density Clustering and Re-sampling
下载PDF
导出
摘要 传统机器学习要求训练样本和测试样本具有相同分布的假设在实际应用中难以满足,为解决这种问题,迁移学习的研究近年来逐渐兴起。其中,基于聚类分析与重采样的迁移学习框架不需要直接估计域分布,且能够修正不同类型的域间差异,但其所采用的聚类算法对参数选择的鲁棒性及不同分布数据的适应性较差,并不能很好地适用于挖掘数据结构信息。为此,该文提出一种基于模糊近邻密度聚类与重采样的迁移学习算法。该方法对不同分布形状和密度的数据具有较好的鲁棒性并能够发现更多的近邻结构信息,能够从源域中迁移更多的有用知识用于目标域的学习。在公共数据集上的实验结果表明所提出的迁移学习方法具有更好的性能。 In many machine learning algorithms, a major assumption was that the training samples and the test samples had the same distribution. However, this assumption did not hold in many real applications. In recent years, transfer learning had attracted a significant amount of attention to solve this problem. Among these methods, an effective algorithm based on clustering analysis and re-sampling could correct different types of domain differences and did not need to estimate the dif- ferent distribution directly. As the critical part, the original clustering algorithm was not good enough at data structure ex- ploration due to its poor robustness on the data with various shapes and densities. In this paper, a new transfer learning al- gorithm based on fuzzy neighborhood density-based clustering and re-sampling was proposed, which was more robust to datasets with various shapes and densities, and could explore more data structure information. With the better explored data structure information, the proposed method could transfer more useful knowledge from source domain to target domain. Val- idation of the proposed method was performed with extensive experiments. Results demonstrate that the proposed method can more effectively and stably enhance the learning performance.
出处 《信号处理》 CSCD 北大核心 2016年第6期651-659,共9页 Journal of Signal Processing
基金 国家高技术研究发展计划(863计划)资助课题 安徽省自然科学基金项目(1308085QF99 1408085MKL46)
关键词 迁移学习 聚类分析 密度聚类 模糊近邻 transfer learning clustering analysis density-based clustering fuzzy neighborhood
  • 相关文献

参考文献18

  • 1Pan S J, Yang Q. A Survey on Transfer Learning [ J]. IEEE Transactions on Knowledge and Data Engineering, 2010, 22(10) : 1345-1359.
  • 2Lu J, Vahid Behbood, Peng Hao, et al. Transfer Learn- ing using Computational Intelligence: A Survey [ J ]. Knowledge-Based Systems, 2015, 80 : 14-23.
  • 3Sun S L, Shi H L, Wu Y B. A Survey of Multi-Source Domain Adaptation [ J ]. Information Fusion, 2015, 24 : 84-92.
  • 4Shao L, Zhu F, Li X L. Transfer Learning for Visual Categorization: A Survey[ J]. IEEE Transactions on Neu- ral Networks and Learning Systems, 2015,26(5) : 1019- 1034.
  • 5Deng Z H, Choi K S, Jiang Y Z, et ah Generalized Hid- den-Mapping Ridge Regression, Knowledge-Leveraged Inductive Transfer Learning for Neural Networks, Fuzzy Systems and Kernel Methods [ J ]. IEEE Transactions on Cybernetics, 2014, 44(12) : 2585-2599.
  • 6Bahadori M T, Liu Y, Zhang D. A General Framework for Scalable Transductive Transfer Learning [ J ]. Knowl- edge and Information Systems, 2014, 38( 1 ): 61-83.
  • 7Cheng B, Liu M, Suk H I, et al. Muhimodal Manifold- Regularized Transfer Learning for MCI Conversion Predic- tion[J]. Brain Imaging and Behavior, 2015, 9(4) : 1-14.
  • 8Wang H Y, Zheng V W, Zhao J, et al. Indoor Localization in Multi-Floor Environments with Reduced Effort [ C ] // Proceedings of IEEE International Conference on Perva- sive Computing and Communications, Mannheim: IEEE, 2010 : 244-252.
  • 9Fang M, Yin J, Zhu X Q, et al. TrGraph: Cross-Net- work Transfer Learning via Common Signature Subgraphs [ J ]. IEEE Transactions on Knowledge and Data Engi- neering, 2015, 27(9): 2536-2549.
  • 10Shafik R A, Das A K, Maeda-Nunez L A, et al. Learning Transfer-based Adaptive Energy Minimization in Embedded Systems[ J ]. IEEE Transactions on Computer-Aided De- sign of Integrated Circuits and Systems, 2015, In Press.

二级参考文献11

  • 1Mitola J, Maquire G Q JR. Cognitive radio:making software radios more personal [ J ]. IEEE Personal Communications, 1999,6(4) :13-18.
  • 2Mitola J. Cognitive radio:an integYated agent architecture for software defined radio [ D ]. KTH Royal Institute of Technology, Stockholm, Sweden, 2000.
  • 3Mitola J. Cognitive radio for flexible mobile multimedia communication [ J]. Mobile Multimedia Communications. 1999, 11(1) :3-10.
  • 4Simon H. Cognitive radio:brain-empowered wireless communications[J]. IEEE Journal on Selected Areas in Communications, 2005,23 ( 2 ) : 201-220.
  • 5Akyildiz I F,Lee W Y, Vuran M C, Mohanty S. NeXt generation/dynamic spectrum access/cognitive radio wireless networks: A survey [ C ]. Computer Networks 50, 2127- 2159,2006.
  • 6Kanodia V,Sabharwal A,Knightly E. MOAR: a multi-channel opportunistic auto-rate media access protocol for ad hoc networks [ C ]. IEEE BROADNETS 2004. October 2004. 600-610.
  • 7Cabric D, Mishra S M, Willkomm D, et al. A cognitive radio approach for usage of virtual unlicensed spectrum [ C ]. 14th IST Mobile and Wireless Communication Summit, 2005.
  • 8Sahai A, Hoven N, Tandra R. Some Fundamental Limits on Cognitive Radio[ C ]. allerton conf. on communication control and computing 2004, October 2004.
  • 9Krishnamurthy S, Thoppian M, Venkatesan S, and Prakash R. Control Channel Based MAC-Layer Configuration, Routing and Situation Awareness for Cognitive Radio Networks [ C ]. IEEE MILCOM 2005, October 2005.
  • 10Oner M,Jondral F. Cyclostationarity-Based Methods for the Extraction of the Channel Allocation Information in a Spectrum Pooling System [ C ]. IEEE Radio and Wireless Conference 2004. Karlsruhe Univ. , Germany. 2004.

共引文献4

同被引文献27

引证文献3

二级引证文献21

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部