期刊文献+

多尺度分块协同表示的选择性集成人脸识别算法 被引量:1

A Selective Ensemble Face Recognition Algorithm Based on Multi-scale Patch Collaborative Representation
下载PDF
导出
摘要 为了进一步改善人脸识别系统在小样本条件下的识别性能,本文在图像分块协同表示分类算法的基础上,提出了一种新的基于多尺度分块协同表示选择性集成的人脸识别算法。该算法首先通过对各个尺度下的图像子块进行总变差加权,突出具有鉴别能力的局部关键特征子块的判别作用;其次通过多尺度分块协同表示的选择性集成,显著地提高了分类器的泛化能力和稳健性。对于三种不同采集条件下涵盖各种光照、表情和姿态变化的标准人脸数据库进行数值实验,实验结果表明新算法比现有的稀疏表示分类算法具有显著的识别性能和鲁棒性。 In order to further improve the recognition performance of face recognition system under the condition of small sample size, we propose a novel selective ensemble face recognition algorithm based on multi-scale patch collaborative rep- resentation. Firstly, the newly proposed method has the ability to identify key characteristic sub-blocks through total varia- tion local patch weighted. Secondly, it also effectively improves the generalization ability and robustness of the ensemble classifier through selective ensemble of multi-scale patch collaborative representation. Numerical experiments were carried out on three standard face databases under different acquisition environments with a variety of light, facial expression and posture changes. The experimental results indicate that the newly proposed algorithm has better recognition performance and robustness than the existing state of the art sparse representation classification algorithm.
出处 《信号处理》 CSCD 北大核心 2016年第6期707-714,共8页 Journal of Signal Processing
基金 国家自然科学基金(11526161 11471255 61403298) 陕西省自然科学基础研究计划(2014JQ8323) 西安建筑科技大学科技基金项目(RC1438 QN1508)
关键词 稀疏表示分类 分块协同表示 总变差加权 多尺度选择性集成 sparse representation classification patch collaborative representation total variation weighted multi-scaleselective ensemble
  • 相关文献

参考文献21

  • 1Patel V M, Wu T, Biswas S. Dictionary-based face rec- ognition under variable lighting and pose [J ]. IEEE Transactions on Information Forensics and Security, 2012, 7 ( 3 ) : 954-965.
  • 2Tan X, Chen S, Zhou Z H, et al. Recognizing partially occluded expression variant faces from single training im- age per person with SOM and soft k-NN ensemble [ J ]. IEEE Transactions on Neural Networks, 2005, 16 (4) : 875- 886.
  • 3Raudys S J, Jain A K. Small sample size effects in statis- tical pattern recognition: Recommendations for practition- ers[ J]. IEEE Transactions on Pattern Analysis and Ma- chine Intelligence, 1991, 13 (3) : 252-264.
  • 4Chen S, Liu J, Zhou Z H. Making FLDA applicable to face recognition with one sample per person [ J ]. Pattern Recognition, 2004, 37 (7) : 1553-1555.
  • 5Wright J, Yang A Y, Ganesh A, et al. Robust face rec- ognition via sparse representation [ J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2009, 31 (2) : 210-227.
  • 6Gao S, Tsang I W H, Chia L T. Kernel sparse represen- tation for image classification and face recognition [ C ]// Computer Vision-ECCV, 2010 : 1-14.
  • 7Yang M, Zhang L. Gabor feature based sparse represen- tation for face recognition with gabor occlusion dictionary. [ M ]. Computer Vision-ECCV, Springer Berlin Heidel- berg, 2010: 448-461.
  • 8Huang M W, Wang Z, Ying Z L. A new method for fa- cial expression recognition based on sparse representation plus LBP [ C ]//IEEE International Congress on Image and Signal Processing, 2010, 4: 1750-1754.
  • 9Mei X, Ling H. Robust visual tracking and vehicle classi- fication via sparse representation [ J ]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2011, 33 ( 11 ) : 2259-2272.
  • 10Zafeiriou S, Petrou M. Sparse representations for facial ex- pressions recognition via ll optimization [ C ]//Computer Vision and Pattern Recognition Workshops, 2010: 32-39.

二级参考文献57

  • 1王守觉,曲延锋,李卫军,覃鸿.基于仿生模式识别与传统模式识别的人脸识别效果比较研究[J].电子学报,2004,32(7):1057-1061. 被引量:46
  • 2W. Zhao, R. Chellappa, P.J. Phillips, A. Rosenfeld. Face recognition: A literature survey [ J ]. ACM Compu- ting Survey. 2003, 35(4) : 399-459.
  • 3W.C. Zhang, S. G. G. Shan, X.L. Chen, W. Gao. Lo- cal gabor binary patterns based on Kullback-Leibler diver- gence for partially occluded face recognition [ J ]. IEEE Signal Proc. Letter, 2007, 14(11) : 875-878.
  • 4J.H. Shin, D. Smith,W. Swiercz, and etc. Recognition of Partially Occluded and Rotated Images With a Network of Spiking Neurons [ J ]. IEEE Trans. on Neural Network, 2010, 21 ( 11 ) : 1697-1709.
  • 5X.Y. Tan, S.C. Chen, Z.H. Zhan,etc. Recognizing par- tially occluded, expression variant faces from single train- ing image per person with SObi and soft k-NN ensemble [J]. IEEE Trans. on Neural Network, 2005, 16(4) : 875- 886.
  • 6J. Kim, J. Choi, J. Yi, M. Turk. Effective representa- tion using ICA for face recognition robust to local distor- tion and partial occlusion[J]. IEEE Trans. on Pattern A- nalysis and Machine Learning, 2005, 27 ( 12 ) : 1977- 1981.
  • 7D. D. Lee and H. S. Seung. Learning the parts of ob- jects by nonnegative matrix factorization [ J ]. Nature, 1999, 401, 788-791.
  • 8S.Z. Li, X.W. Hou, H.J. Zhang, Q.s. Cheng. Learn- ing spatially localized, parts-based representation [ C ]. 2001 IEEE Computer Society Conference on Computer Vi- sion and Pattern Recognition, 1, Proceedings, 2001, 1186 : 207-212.
  • 9A.M. Martinez. Recognizing imprecisely localized, par- tially occlude, and expression variant faces from a single samples per class [ J ]. IEEE Trans. on Pattern Analysis and Machine Learning, 2002, 24(6) : 748-763.
  • 10A.G. Park, K. M. Lee, and S. U. Lee. Face recogni- tion uing Faee-ARG matching[ J]. IEEE Trans. on Pat- tern Analysis and Machine Learning, 2005, 27 (12) : 1982-1988.

共引文献10

同被引文献14

引证文献1

二级引证文献6

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部