期刊文献+

一种基于协方差矩阵重构的鲁棒波束形成方法 被引量:2

A robust beamforming algorithm based on covariance matrix reconstruction
下载PDF
导出
摘要 针对鲁棒Capon波束形成算法中采用牛顿迭代求解对角加载因子时,运算量大且算法旁瓣增益高的问题,提出了一种改进的稳健波束形成算法。首先对干扰协方差矩阵进行重构,然后将重构的协方差矩阵投影到噪声子空间,使期望信号导向矢量在噪声子空间投影最优,最后精确求解对角加载因子。该方法的运算量低于RCB算法中牛顿迭代和最差性能最优(WCPO)算法中凸规划运算,并且提高了加载因子的计算精度。实际仿真结果表明,改进算法有效克服了信号方向估计误差,具有更低且稳定的旁瓣增益,输出信干噪比性能优于现有其他方法。 In view of the robust Capon beamforming algorithm, the Newton iterative method is utilized to obtain the diagonal loading factor, which leads to problems of large amount of computation and high side lobe gain. This paper propose new robust beamforming algorithm. Firstly, the interference covariance matrix is reconstructed, and then the reconstructed covariance matrix is projected to the noise subspace, so that the optimum projection of the desired signal steering vector in the noise subspace can be achieved, and the diagonal loading factor is accurately solved. The computation of the proposed algorithm is less than RCB and WCPO method, which improve calculation accuracy of the load factor. Practical simulation results show that the proposed method overcomes the problem of signal direction estimation errors effectively, has a lower beam side-lobe gain than RCB and WCPO algorithm, and outcomes other existing methods.
出处 《电子设计工程》 2016年第11期21-25,共5页 Electronic Design Engineering
基金 航天科技创新基金(CASC2015021)
关键词 鲁棒波束形成 协方差矩阵重构 对角加载 导向矢量误差 方向图畸变 robust beamforming covariance matrix reconstruction diagonal loading steering vector error beam pattern distortion
  • 相关文献

参考文献5

二级参考文献62

  • 1丁前军,王永良,张永顺.自适应阵列中多级维纳滤波器的有效实现算法[J].电子与信息学报,2006,28(5):936-940. 被引量:15
  • 2Xu G and Kailath T. Fast subspace decomposition [J]. IEEE Transactions on Signal Processing, 1994, 42(3): 539-551.
  • 3Goldstein J S, Reed I S, and Scharf L L. A multistage representation of the Wiener filter based on orthogonal projections [J]. IEEE Transactions on Information Theory, 1998, 44(7): 2943-2959.
  • 4Huang L and Wu S. Low-complexity MDL method for accurate source enumeration [J]. IEEE Signal Processing Letters, 2007, 14(9): 581-584.
  • 5Huang L, Wu S, and Li X. Reduced-rank MDL method for source enumeration in high-resolution array processing {J]. IEEE Transactions on Signal Processing, 2007, 55(12): 5658-5667.
  • 6Huang L, Long T, and Wu S. Source enumeration for high resolution array processing using improved Cerschgorin radii without eigendecompostion [J]. IEEE Transactions on Signal Processing, 2008, 56(12): 5916-5925.
  • 7Werner S, With M, and Koivunen V. Householder multistage Wiener filter for space-time navigation receivers [J]. IEEE Transactions on Aerospace and Electronic Systems, 2007, 43(3): 975-988.
  • 8Golub G and Loan C V. Matrix Computations [M]. 3nd ed. Baltimore. The Johns Hopkins University Press, 1996: 208-213.
  • 9J Capon.High-resolution for frequency-wavenumber spectrum analysis[J].Proc IEEE,1969,57(8):1408-1418.
  • 10H L Van Trees.Detection,Estimation and Modulation Theory,Part Ⅳ,Optimum Array Processing[M].New York:Wiley,2002.

共引文献29

同被引文献19

引证文献2

二级引证文献12

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部