期刊文献+

基于RSGWPT和EEMD的滚动轴承故障诊断 被引量:3

Rolling element bearing fault diagnosis based on RSGWPT and EEMD method
下载PDF
导出
摘要 针对较强噪声环境下的滚动轴承故障识别问题,提出并研究了一种新的滚动轴承故障诊断技术,采用将冗余二代小波包变换(RSGWPT)和集合经验模态分解(EEMD)相结合提取故障特征的方法。仿真实验和振动信号诊断结果表明,此方法可以提取特征频率,有效抑制噪声,根据实际数据准确地诊断出滚动轴承的故障类型,为强噪声背景下提取弱信号开辟了新思路。 Aiming at the problem of rolling element bearing fault identification in the strong noise environment, a novel method of fault diagnosis for rolling element bearing is proposed and studied. This method implements an analysis combining redundant second generation wavelet packet transform(RSGWPT) and ensemble empirical mode decomposition(EEMD) to extract the fault characteristics from the measured signal. The simulation experiments and vibration signal diagnosis results show that the proposed method can extract the characteristic frequency and suppress the noise effectively, and can diagnose the fault type of rolling bearing accurately according to the actual data.
出处 《电子设计工程》 2016年第11期102-104,107,共4页 Electronic Design Engineering
基金 国家自然科学基金(51577007)
关键词 冗余二代小波包变换 集合经验模态分解 滚动轴承 故障诊断 RSGWPT EEMD rolling element bearings fault diagnosis
  • 相关文献

参考文献4

  • 1Sweldens w. The lifting scheme: a construction of secondgeneration wavelets[J]. SIAM Journal on Mathematical Anal-ysis, 1998,29(2):511-546.
  • 2张晨罡,郝伟,李志农,王丽雅.基于EMD和AR模型的滚动轴承故障SVM识别[J].煤矿机械,2007,28(7):183-186. 被引量:7
  • 3Zhang X, Zhou J. Multi -fault diagnosis for rolling elementbearings based on ensemble empirical mode decompositionand optimized support vector machines[J]. Mech. Syst. SignalProcess,2013,41 (1-2):127-140.
  • 4Guo S,Gu G C, Li C Y, An algorithm for improving Hilbert-Huang transform[J]. ICCS, 2007,4489:137-140.

二级参考文献4

共引文献6

同被引文献33

引证文献3

二级引证文献7

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部