期刊文献+

面向语音与面部表情信号的情感可视化方法

Emotion visualization method for speech and facial expression signals
下载PDF
导出
摘要 为了提高情感可视化的鲁棒性,该文提出了一种面向语音与面部表情信号的情感可视化方法。首先对获取的情感信号进行特征提取,并将其作为神经网络的输入,神经网络的输出即为相应的图案信息,然后通过图像生成模块生成可视化图像,实现对中性、高兴、愤怒、惊奇、悲伤和恐惧六种人类基本情感的可视化。该方法通过组合不同模式的情感特征进入一幅图像中,为人们创造了情感的可读模式,可以直观地展示情感的分类结果。仿真实验结果表明,仅通过语音信号进行可视化的平均正确率是78.0%,而通过该文方法的平均正确率是91.8%,具有良好的鲁棒性和易懂性。 In order to improve the robustness of emotion visualization, this paper proposes a new emotion visualization method for speech and facial expression signals. Firstly, extracts emotion feature parameters. Then makes the feature parameters as the input of neural network, the output of neural network is the corresponding pattern information, and then generates a visual image by image generation module, and finally accomplishes the visualization for six kinds of human emotion(neutral, joy,anger, surprise, sadness, fear). This method creates emotion readable mode for people by combining the emotion features of different patterns into an image. That can visually show emotion classification results. The simulation results show that the average correct rate is 78.0% only through speech signal, while the average correct rate is 91.8% through the proposed method.That is robust and easy to understand.
作者 韩志艳 王健
机构地区 渤海大学
出处 《电子设计工程》 2016年第11期146-149,共4页 Electronic Design Engineering
基金 国家自然科学基金(61503038,61403042)
关键词 语音信号 面部表情信号 情感可视化 特征提取 speech signal facial expression signal emotion visualization feature extraction
  • 相关文献

参考文献16

  • 1余伶俐,蔡自兴,陈明义.语音信号的情感特征分析与识别研究综述[J].电路与系统学报,2007,12(4):76-84. 被引量:27
  • 2Mao X, Chen L J. Speech emotion recognition based onparametric filter and fractal dimension [J], IEICE Trans onInformation and Systems, 2010,93 (8) :2324-2326.
  • 3Attabi Y,Dumouchel P. Anchor models for emotion recogni-tion from speech [J]. IEEE Trans on Affective Computing,2013,4(3):280-290.
  • 4Zheng W M,Xin M H, Wang X L et al. A novel speech e-motion recognition method via incomplete sparse leastsquare regressionfj]. IEEE Signal Processing Letters,2014,21(5):569-572.
  • 5Mao Q R,Dong M,Huang Z W,et al. Learning salientfeatures for speech emotion recognition using convolutionalneural networks[J]. IEEE Trans on Multimedia,2014,16(8):2203-2213.
  • 6梁路宏,艾海舟,徐光祐,张钹.人脸检测研究综述[J].计算机学报,2002,25(5):449-458. 被引量:354
  • 7Rahulamathavan Y,Phan R C -W,Chambers J A, et al. Fa-cial expression recognition in the encrypted domain basedon local fisherdiscriminant analysis[J]. IEEE Trans on Af-fective Computing ,2013,4(1) :83-92.
  • 8文沁,汪增福.基于三维数据的人脸表情识别[J].计算机仿真,2005,22(7):99-103. 被引量:10
  • 9Zheng W M. Multi-view facial expression recognition basedon group sparse reduced-rank regression[J]. IEEE Trans onAffective Computing, 2014,5(1):71-85.
  • 10PetrantonakisP C, Hadjileontiadis L J. Emotion recognitionfrom EEG using higher order crossings [J]. IEEE Trans onInformation Technology in Biomedicine,2010,14(2):186-197.

二级参考文献138

共引文献398

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部