期刊文献+

动态异方差随机前沿模型的Bayesian推断 被引量:3

Bayesian inference for dynamic heterogeneity stochastic frontier model
下载PDF
导出
摘要 随机前沿模型中如果忽略单边干扰项的异质性(heterogeneity)往往导致错误的效率估计.从个体特征的影响和方差的时变性两方面对单边干扰项进行考虑,提出异方差动态随机前沿模型.利用Gibbs抽样方法对动态异方差随机前沿模型进行Bayesian分析.导出了模型参数的后验条件分布,对中小样本的模拟实验显示在最小后验均方误差准则下得到的参数估计值非常接近真值.对电力公司的实际数据进行分析显示对数无效率项的方差有一定的时变性. If heterogeneity of the "inefficiency" term is disregarded,it will result in the incorrect estimate of this term in the stochastic frontier model.By combining the influence from characteristic differences of individuals with the time-varying property of variance,a dynamic heterogeneity stochastic frontier model is proposed.By the Gibbs sampling,the methodology for Bayesian analysis of the dynamic heterogeneity stochastic frontier model is given.For each model parameter,the posterior distribution is derived.A simulation study shows that under the criterion of minimizing the posterior mean square error,the Bayesian estimate is close to its true value for small and medium sized samples.From the Bayesian analysis based on the real electric power company generation data,it is evidenced that there exists the time-varying property for the variance of the logarithm "inefficiency" term.
作者 程迪 张世斌
出处 《高校应用数学学报(A辑)》 CSCD 北大核心 2016年第2期127-135,共9页 Applied Mathematics A Journal of Chinese Universities(Ser.A)
基金 上海市自然科学基金(13ZR1419100) 上海市教委科研创新项目(14YZ115)
关键词 随机前沿模型 Bayesian分析 异方差 GIBBS抽样 Metropolis-Hastings抽样 stochastic frontier model Bayesian inference heterogeneity Gibbs sampling Metropolis-Hastings sampling
  • 相关文献

参考文献16

  • 1Aigner D, Knox-Lovell C A, Schmdt P. Formulation and estimation of stochastic frontier production function models [J]. J Econometrics, 1977, 6: 21-37.
  • 2Meeusen W, van der Broeck J. Efficiency estimation from Cobb-Douglas production functions with Composed Error[J]. Internat Econom Rev, 1977, 18: 435-444.
  • 3Stevenson R E. Likelihood functions for generalized stochastic frontier model[J]. J Econo- metrics, 1980, 13: 57-66.
  • 4Greene W H. A gamma-distributed stochastic frontier model[J]. J Econometrics, 1994, 61: 273-303.
  • 5刘晓君,张世斌.正态倒Gamma随机前沿模型的Bayesian推断[J].高校应用数学学报(A辑),2013,28(4):488-496. 被引量:3
  • 6Greene W. Reconsidering heterogeneity in panel data estimators of the stochastic frontier model[J]. J Econometrics, 2005, 126: 269-303.
  • 7Carta A, Steel M F J. Modelling multi-output stochastic frontiers using copulas[J]. Comput Statist Data Anal, 2012, 56: 3757-3773.
  • 8Tsionas E. Inference in dynamic stochastic frontier models[J]. J Appl Econom, 2006, 21: 669-676.
  • 9Chen Yi-Yi, Schmidt P, Wang Hung-Jen. Consistent estimation of the fixed effects stochastic frontier model[J]. J Econometrics, 2014, 181: 65-76.
  • 10Griffin J, Steel M. Flexible mixture modelling of stochastic frontiers[J]. J Prod Anal, 2008, 29: 33-50.

二级参考文献16

  • 1茆诗松,王静龙,濮晓龙.高等数理统计:第2版[M].北京:高等教育出版社,2006.
  • 2Aigner D, Knox-Lovell C A, Schmidt P. Formulation and estimation of stochastic frontier production function models[J]. J Econometrics, 1977, 6: 21-37.
  • 3Meeusen W, van der Broeck J. Efficiency estimation from Cobb-Douglas production functions with Composed Error[J]. Internat Econom Rev, 1977, 18: 435-444.
  • 4Stevenson R E. Likelihood functions for generalized stochastic frontier estimation[J]. J Econometrics, 1980, 13: 57-66.
  • 5Greene W H. A gamma-distributed stochastic frontier model[J]. J Econometrics, 1990, 46: 141-163.
  • 6van der Broeck J, Koop G, Osiewalski J, et al. Stochastic frontier models: a Bayesian perspective[J]. J Econometrics, 1994, 61: 273-303.
  • 7Tsionas E. Full likelihood inference in normal-gamma stochastic frontier models[J]. J Product Anal, 2000, 13: 183-205.
  • 8Kozumi H, Zhang Xingyuan. Bayesian and non-Bayesian analysis of gamma stochastic frontier models by Markov chain Monte Carlo methods[J]. Comput Statist, 2005, 20: 575- 593.
  • 9Greene W H. Simulated likelihood estimation of the Normal-Gamma stochastic frontier function[J]. J Product Anal, 2003,19: 179-190.
  • 10Huang H C. Estimation of technical inefficiencies with heterogeneous technologies[J]. J Product Anal, 2004, 21: 277-296.

共引文献2

同被引文献22

引证文献3

二级引证文献5

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部