期刊文献+

一类分数阶差分方程边值问题多重正解的存在性 被引量:4

Existence of multiple positive solutions for a boundary value problem of fractional difference equation
下载PDF
导出
摘要 考虑一类高阶分数阶差分方程边值问题.构造相关的格林函数,利用不等式技巧,分析格林函数的特征性质.运用不动点指数理论,获得了该分数阶差分方程边值问题存在多重正解的充分条件,举例说明了所获理论的有效性. By constructing the corresponding Green's function and analysing the key properties with inequality technique,a high order fractional difference equation with boundary value conditions is studied in this paper.The existence of multiple positive solutions is obtained by using the fixed point index theory.Additionally,two examples are illustrated to guarantee the main results.
出处 《高校应用数学学报(A辑)》 CSCD 北大核心 2016年第2期167-175,共9页 Applied Mathematics A Journal of Chinese Universities(Ser.A)
基金 国家自然科学基金(11471278) 湖南省自然科学基金(2016JJ6139)
关键词 多重正解 边值问题 分数阶差分方程 存在性 multiple positive solution boundary value problem fractional difference equation existence
  • 相关文献

参考文献14

  • 1Ferreira R A C. Positive solutions for a class of boundary value problems with fractional q-differences[J]. Commput Math Appl, 2011, 61: 367-373.
  • 2Benchohra M, Hamani S, Ntouyas S K. Boundary value problems for differential equations with fractional order and nonlocal conditions[J]. Nonlinear Anal, 2009, 71: 2391-2396.
  • 3Atici F M, Eloe P W. Two-point boundary value problems for finite fractional difference equations[J]. J Differ Equ Appl, 2011, 17(4): 445-456.
  • 4Atici F M, Sengul S. Modeling with fractional difference equations[J]. J Math Anal Appl, 2010, 369(1): 1-9.
  • 5Atici F M, Eloe P W. Two-point boundary value problems for finite fractional difference equations[J]. J Differ Equ Appl, 2011, 17(4): 445-456.
  • 6Atici F M, Uyanik M. Analysis of discrete fractional operators[J]. Appl Anal Discrete Math, 2015, 9(1): 139-149.
  • 7Goodrich C S. On discrete sequential fractional boundary value problems[J]. J Math Anal Appl, 2012, 385(1): 111-124.
  • 8Goodrich C S. Systems of discrete fractional boundary value problems with nonlinearities satisfying no growth conditions[J]. J Differ Equ Appl, 2015, 21(5): 437-453.
  • 9Lv Weidong. Existence and uniqueness of solutions for a discrete fractional mixed type sum- difference equation boundary value problem[J]. Discrete Dyn Nature Soc, 2015, Article ID 376261, 10 pages.
  • 10Luo Xiannan, Guo Shancui. Existence and uniqueness of solutions for fractional boundary value problem with fractional boundary value conditions[J]. Qual Theory Dyn Syst, 2014, (13): 1-17.

二级参考文献14

  • 1BAI Z B, LV H S. Positive solution for boundary value problem of nonlinear fractional differential equation [ J ]. Journal of Mathematical Analysis and Applications, 2005, 311(2) : 495 -505.
  • 2ZHANG S Q. Positive solutions to singular boundary val- ue problem for nonlinear fractional differential equation [ J ]. Computers and Mathematics with Applications, 2010, 59(3) :1300 -1309.
  • 3WANG J R, LV L L, ZHOU Y. Ulam stability and data dependence for fractional differential equations with Capu- to derivative [ J ]. Electronic Journal of Qualitative Theory of Differential Equations, 2011, 22(63) : 1 - 10.
  • 4WANG J H, XIANG H J, ZHAO Y L. Monotone and concave positive solutions to a boundary value problem for higher order fractional differential equation [ J ]. Abstract and Applied Analysis, 2011, 71 (5) : 1821 - 1848.
  • 5ATICI F M, ELOE P W. Two-point boundary value prob- lems for finite fractional difference equations [ J ]. Journal of Difference Equations and Applications, 2011, 17 (4) : 445 - 456.
  • 6GOODRICH C S. On positive solutions to nonlocal frac- tional integer-order difference equations [ J ]. Applicable Analysis and Discrete Mathematics, 2011, 5 ( 1 ) : 122 - 132.
  • 7PAN Y Y, HAN Z L, SUN S R, et al. The existence of solutions to a class of boundary value problems with frac- tional difference equations [ J ]. Advances in Difference Equations, 2013, 2013 (3) : 1642 - 1654.
  • 8CHEN F L, ZHOU Y. Existence and Ulam stability of solutions for discrete fractional boundary value problem [J]. Discrete Dynamics in Nature and Society, 2013, 2013(9) :2013 -2022.
  • 9GOODRICH C S. Existence of a positive solution to a system of discrete fractional boundary value problems [ J]. Applied Mathematics and Computation, 2011,217(9) : 4740 - 4753.
  • 10WU G C, BALEANU D. Discrete fractional logistic map and its chaos [J]. Nonlinear Dynamics, 2014, 75( 1/ 2) : 283 - 287.

共引文献8

同被引文献5

引证文献4

二级引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部