期刊文献+

基于Hadoop的医院数据利用探索与实践 被引量:28

Exploration and Practice of Hospita's Data Utilization Based on the Hadoop
下载PDF
导出
摘要 为了解决医院临床科研的数据利用问题,引入基于Hadoop技术框架的大数据技术,分析临床数据中心对临床科研工作的有利因素,通过完善数据采集、规划数据展现等方面的具体实践,进行多学科临床科研特别是重点专科在数据利用上的探索。标准化数据采集、建立不同层级的指标体系、落实临床数据中心的运行机制有助于医院实现数据利用。 In order to solve the problem of hospital clinical data utilization,we use big data technology based on the Hadoop, which analyzes favorable factors of clinical and scientifi c research in clinical data center. Through the practice of data utilization for clinical scientifi c research of multiple disciplines especially for key subject by data acquisition and display, it is proved to be helpful for hospitals in data utilization in improving the standardization of data acquisition, planning and different hierarchy of index system, and establishing operation mechanism of clinical data centers
作者 李维 计虹
出处 《中国卫生信息管理杂志》 2016年第1期70-74,共5页 Chinese Journal of Health Informatics and Management
关键词 大数据 临床数据中心 数据利用 Hadoop Clinical data center Data utilization
  • 相关文献

参考文献6

二级参考文献111

  • 1姜红,朱同玉,黄锦培,叶茂,符逸,徐治国.综合性医院科研实验室管理存在的问题与对策[J].中华医学科研管理杂志,2006,19(3):149-150. 被引量:15
  • 2郑晓娟,张道明.浅议医学院校实验室的建设和管理[J].医学信息(西安上半月),2007,20(6):945-946. 被引量:10
  • 3Zhou MQ, Zhang R, Zeng DD, Qian WN, Zhou AY. Join optimization in the MapReduce environment for column-wise data store. In: Fang YF, Huang ZX, eds. Proc. of the SKG. Ningbo: IEEE Computer Society, 2010.97-104. [doi: 10.1109/SKG.2010.18].
  • 4Afrati FN, Ullman JD. Optimizing joins in a Map-Reduce environment. In: Manolescu I, Spaecapietra S, Teubner J, Kitsuregawa M, Leger A, Naumann F, Ailamaki A, Ozcan F, eds. Proc. of the EDBT. Lausanne: ACM Press, 2010. 99-110. [doi: 10.1145/ 1739041.1739056].
  • 5Sandholm T, Lai K. MapReduce optimization using regulated dynamic prioritization. In: Douceur JR, Greenberg AG, Bonald T, Nieh J, eds. Proc. of the SIGMETRICS. Seattle: ACM Press, 2009. 299-310. [doi: 10.1145/1555349.1555384].
  • 6Hoefler T, Lumsdaine A, Dongarra J. Towards; efficient MapReduce using MPI. In: Oster P, ed. Proc. of the EuroPVM/MPI. Berlin: Springer-Verlag, 2009. 240-249. [doi: 10.100'7/978-3-642-03770-2_30].
  • 7Nykiel T, Potamias M, Mishra C, Kollios G, Koudas N. MRShare: Sharing across multiple queries in MapReduce. PVLDB, 2010, 3(1-2):494-505.
  • 8Kambatla K, Rapolu N, Jagannathan S, Grama A. Asynchronous algorithms in MapReduce. In: Moreira JE, Matsuoka S, Pakin S, Cortes T, eds. Proc. of the CLUSTER. Crete: IEEE Press, 2010. 245-254. [doi: 10.1109/CLUSTER.2010.30].
  • 9Polo J, Carrera D, Becerra Y, Torres J, Ayguad6 E, Steinder M, Whalley I. Performance-Driven task co-scheduling for MapReduce environments. In: Tonouchi T, Kim MS, eds. Proc. of the 1EEE Network Operations and Management Symp. (NOMS). Osaka: IEEE Press, 2010. 373-380. [doi: 10.1109/NOMS.2010.5488494].
  • 10Zaharia M, Konwinski A, Joseph AD, Katz R, Stoica I. Improving MapReduce performance in heterogeneous environments. In: Draves R, van Renesse R, eds. Proc. of the ODSI. Berkeley: USENIX Association, 2008.29-42.

共引文献561

同被引文献211

引证文献28

二级引证文献270

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部