摘要
考察了含3-5阶非线性的一维和二维非线性薛定谔方程,获得了非线性强度是横向坐标的指数函数的条件下方程的基态孤子解,并用分布傅里叶法对其稳定性进行了数值分析。结果表明,三阶、五阶非线性强度是横向坐标的指数函数时,在一定的参数范围内可以形成稳定的亮孤子,随着传播常数的增大,基态孤子能稳定传输的距离越远。
The one / two- dimension nonlinear Schrodinger equation with cubic- quintic nonlinearities from the symmetrical self- defocus medium is studied and its bright soliton solutions are obtained in the case that the cubic- quintic nonlinear strengths are the exponential function of the transverse coordinate( s). It was numerically found that the stability of solitons depends on propagation constant. Soliton propagation distance increases with propagation constant.
出处
《湖北师范学院学报(自然科学版)》
2016年第2期67-70,共4页
Journal of Hubei Normal University(Natural Science)
关键词
非线性薛定谔方程
3-5阶非线性
稳定性分析
nonlinear Schrdinger equation
cubic-quintic nonlinearity
stability analysis