期刊文献+

一种基于多视角聚类的离群检测算法

Multi-View Clustering Based Outlier Detection Algorithm
下载PDF
导出
摘要 复杂数据集通常包含不同的组织模式,传统的离群检测算法从单一视角寻找离群点,不能充分利用多视角信息,造成信息遗漏。提出一种基于多视角聚类的离群检测算法,该算法一方面采用谱聚类,以确保高质量的聚类结果;另一方面通过希尔伯特-施密特独立性准则,以确保新的聚类结果相对于已知划分模式是无冗余的。对得到多个视角进行离群分析,从而得到更准确的离群集。研究结果表明,该算法能够提高离群检测精度。 Complex data sets usually contain different organization patterns,traditional outlier detection algorithm cannot make full use of multi-view information and cause outlier missing from a single point of view.Proposes a multi-view clustering outlier detection algorithm,which on the one hand uses a spectral clustering algorithm to ensure high quality of clustering results;on the other hand,through Hilbert-Schmidt independence criterion to ensure that the new clustering result and the known partition model comparison are not redundant.And then gets more accurate outlier sets through the multi-view of the outlier analysis.The results show that the algorithm can improve the accuracy of outlier detection.
作者 姚鹏 古平
出处 《现代计算机(中旬刊)》 2016年第5期43-47,共5页 Modern Computer
关键词 离群检测 多视角 谱聚类 希尔伯特-施密特独立性准则 Outlier Detection Multi-View Spectral Clustering Hilbert-Schmidt Independence Criterion
  • 相关文献

参考文献13

  • 1Chandola V, Banerjee A, Kumar V. Anomaly Detection: A Survey[J]. Acre Computing Surveys ,2009,41 (3):75-79.
  • 2Zimek A, Schubert E, Kriegel H P. A Survey on Unsupervised Outlier Detection in High-Dimensional Numerical Data[J]. Statistical Analysis & Data Mining the Asa Data Science Joumal,2012,66(1):72-8.
  • 3薛安荣,姚林,鞠时光,陈伟鹤,马汉达.离群点挖掘方法综述[J].计算机科学,2008,35(11):13-18. 被引量:69
  • 4Kriegel H P, KrUger P, Schubert E, et al. Interpreting and Unifying Outlier Scores[J]. SDM, 2011:13-24.
  • 5Qi Z J, Davidson I. A Principled and Flexible Framework for Finding Alternative Clusterings[C]. Acre Sigkdd International Conference on Knowledge Discovery & Data Mining. 2009:717-726.
  • 6Gondek D, Hofmann T. Non-Redundant Clustering with Conditional Ensembles[C]. Proceedings of the Eleventh ACM SIGKDD Inter- national Conference on Knowledge Discovery and Data Mining, Chicago, Illinois, USA, August 21-24, 2005. 2005:70-77.
  • 7娄铮铮,叶阳东,刘瑞娜.基于IB方法的无冗余多视角聚类[J].计算机研究与发展,2013,50(9):1865-1875. 被引量:6
  • 8Luxburg U V. A Tutorial on Spectral Clustering[J]. Statistics & Computing, 2007,17 (17):395-416.
  • 9Shi J, Malik J. Normalized Cuts and linage Segmentation[J]. IEEE Trans.pattern Anal.mach.intell, 2000,22(8 ):888-905.
  • 10Ng A Y, Jordan M I, Weiss Y. On Spectral Clustering: Analysis and an Algorithm[J]. Proceedings of Advances in Neural Information Processing Systems, 2001,14:849-856.

二级参考文献94

共引文献73

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部