期刊文献+

一类理想的存取结构的构造 被引量:1

The Construction of a Type of Ideal Access Structures
下载PDF
导出
摘要 构造理想的存取结构对于设计信息率高的秘密共享方案具有重要作用。Shamir(k,n)型方案(区别于Shamir门限方案)对应的存取结构是理想的,但如何求出这类方案对应的互不同构的存取结构是一个需要解决的问题。文章首先提出Shamir(k,n)型方案中两组迹等价的概念,然后将Shamir(k,n)型方案中极小存取结构的同构的判定转化为对应的两组迹的等价问题。文章进而给出了Shamir(k,n)型方案中求极小特权数组的一个算法,利用这个算法可以求出Shamir(k,n)型方案中所有互不等价的迹,从而在理论上完满地解决了Shamir(k,n)型方案中互不同构的理想的存取结构的构造问题。特别地,文章给出有限域F13中当有7个参与者时的所有极小特权数组,并得到了互不等价的迹,进而利用文中的判定方法给出了当有7个参与者时,Shamir(k,n)型方案的所有互不同构的理想的极小存取结构。 The construction of ideal access structure has an important role for designing secret sharing scheme with high information rate. The access structures corresponding to Shamir(k,n)'s type scheme( different from Shamir's threshold type scheme) are ideal, but how to get these access structures which are not mutually isomorphic is a problem needed to be solved. First of all, the definition that the tracks are mutually equivalent is proposed, and then the problem for judging whether two minimal access structures are isomorphic in Shamir(k,n)'s type scheme is converted into the problem for judging whether their corresponding tracks are equivalent. This paper designs an algorithm which can be used to calculate all minimal privileged arrays that exist in the Shamir(k,n)'s type scheme and can be used to calculate all the tracks existing in the Shamir(k,n)'s type scheme that are not mutually equivalent. So this paper perfectly solves the problem that how to construct all ideal access structures which are not mutually isomorphic in the Shamir(k,n)'s type scheme. Particularly, this paper gives all the minimal privileged arrays with 7 participants in finite field F13 and obtains all the tracks that are not mutually equivalent, and thus gives all the ideal minimal access structures with 7 participants that are not mutually isomorphic by the above judgment.
出处 《信息网络安全》 2016年第5期15-22,共8页 Netinfo Security
基金 国家自然科学基金[61373150] 陕西省科学技术研究发展计划工业攻关项目[2013K0611] 中央高校基本科研业务费专项资金[GK201603087]
关键词 Shamir(k n)型方案 极小特权数组 极小存取结构 理想的存取结构 Shamir(k n)'s type scheme tracks minimal privileged arrays minimal access structure ideal access structure
  • 相关文献

参考文献17

  • 1ARPITA M. A Resilient Quantum Secret Sharing Scheme[J].International Journal of Theoretical Physics, 2015, 54 (2) : 398-408.
  • 2赖红,Orgun A.Mehmet,肖井华,Pieprzyk Josef,薛理银.Dynamic(2, 3) Threshold Quantum Secret Sharing of Secure Direct Communication[J].Communications in Theoretical Physics,2015,63(4):459-465. 被引量:1
  • 3TAVAKOLI A, HERBAUTS I, ZUKOWSKI M, et al.Secret Sharingwith a Single d-level Quantum System[EB/OL].http: //joumals.aps.org/pra/abstract/10.1103/PhysRevA.92.030302, 2015-09-21.
  • 4ZHANG Xiaoqian, TAN xiaoqing, LIANG Cui.High EfficientMulti-party Quantum Secret Sharing Scheme[C] //IEEE.InternationalConference on P2P, Parallel, Grid, Cloud and Internet Computing,November 8-10,2014. Guangdong,China.NJ:IEEE, 2014:245-250.
  • 5宋云,李志慧,李永明.极小特权数组上的理想多秘密共享方案[J].中国科学:信息科学,2014,44(5):610-622. 被引量:2
  • 6SHAMIR A. How to Share a Secret[J]. Communications of the ACM,1979,24(11): 612-613.
  • 7BRICKELL E F. Some Ideal Secret Sharing Schemes[J]. Journal ofCombinatorial Mathematics and Combinatorial Computing, 1989(9):105-113.
  • 8DOUGLASR Stinson著.密码学原理与实践(第三版)[M].冯登国,等译.北京:电子工业出版社,2008.
  • 9MASSEYJ L. Minimal Codewords and Secret Sharing[EB/OL]. https://www.researchgate. net/publication/2241774_Minimal_Codewords_and_Secret_Sharing, 2016-01 - 15.
  • 10宋云,李志慧,李永明.基于极小线性码上的秘密共享方案[J].电子学报,2013,41(2):220-226. 被引量:11

二级参考文献60

  • 1杨涛,潘建伟.量子信息技术的新进展——五光子纠缠和开放目的的量子隐形传态[J].中国科学院院刊,2004,19(5):355-358. 被引量:73
  • 2张军,彭承志,包小辉,杨涛,潘建伟.量子密码实验新进展——13km自由空间纠缠光子分发:朝向基于人造卫星的全球化量子通信[J].物理,2005,34(10):701-707. 被引量:12
  • 3Shamir A. How to share a secret. Communications of the ACM [J]. 1979,24(11):612- 613.
  • 4Blaldey G R. Safeguarding cryptographickeys[ A]. Proceedings of National Computer Conference [ C ]. Montvale, NJ: AF-IPS Press,New York: 1979.48:313 - 317.
  • 5Jin Y, Ding C S. Secret sharing schemes from three classes of linear codes[J] .IEEE Tram. Inform. Theory, 2006,52(1) :206 - 212.
  • 6Stinson D R. Ct3rptography Theory and Practice[M] .3rd ed, UnitedStates: 2009.
  • 7Massey J L. Minimal codewords and secret sharing [ A]. The 6th Joint Swedish-Russian Workshop on Infomaation Theory [ C] .Netherlands: Veldhoven, 1993.276 - 279.
  • 8Massey J L. Some Applications of Coding Theory in Cryptogra- phy [M] .Cryptography and Coding IV, England:Formara Ltd, 1995: 33 - 47.
  • 9Ding C S , Jin Y. Coveting and secret sharing with linear codes [ A] .Discrete Mathematics and Theoretical Computer Science: Lecture Notes in Computer Science[ C]. Berlin: Springer Ver- lag, 2003.2731 : 11 - 25.
  • 10Li Z H , Xue T, Lai H. Secret sharing schemes from binary linear codes[ J ]. Information Science, 2011,180 (22) : 4412 - 4419.

共引文献99

同被引文献3

引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部