期刊文献+

基于优化投影矩阵的人脸识别技术研究 被引量:10

Research on the face recognition technology based on optimized projection matrix
下载PDF
导出
摘要 针对大数据背景下人脸识别技术存在的问题,提出一种基于压缩感知的人脸识别技术架构.系统首先利用人脸训练样本优化设计投影矩阵,然后利用优化的投影矩阵进行人脸图像的压缩感知,利用同伦算法进行快速稀疏表示分类.这样人脸识别系统一方面避免大数据传输和存储压力,另一方面可以有效保证系统识别率,实验仿真证实了研究工作的有效性. To solve the face recognition(FR)problem existed under the background of big data,a new kind of FR technology based on compressed sensing(CS)is proposed in this paper.Firstly,the projection matrix is optimized using the face train samples.Then,the optimized projection matrix are used on the face images based on compressed sensing and the homotopy algorithm is used in the compressed sparse representation classification.With these modifications,the new FR technology can avoid large data transmission and storage pressure.On the other hand,the system recognition rate can be guaranteed.The simulation experiments show that the proposed method is valid.
出处 《浙江工业大学学报》 CAS 北大核心 2016年第4期392-398,共7页 Journal of Zhejiang University of Technology
基金 国家自然科学基金资助项目(61273195 61304124 61413262 61503339) 浙江省自然科学基金资助项目(LY13F010009 LQ14F030008) 浙江省教育厅项目(Y201430687)
关键词 人脸识别 压缩感知 投影矩阵 同伦算法 face recognition compressed sensing projection matrix homotopy algorithm
  • 相关文献

参考文献25

  • 1ZHAOW Y,CHELLAPPAR.,PH IL L IP SPJ'et al. Facerecognition.: a literature survey[J]. ACM computer surveys,2003,35(4):399-458.
  • 2LIU C J , WECHSLER H. Gabor feature based classificationusing the enhanced fisher linear discriminate model for facerecogn.ition.[J]. IEEE transactions on neural networks- 2002,11(4)467-476.
  • 3C H E N \L ,E R M J,\U S Q .P C A an d L D A in D C T d .-main[J]. Pattern recognition letters,2005,26(15) :2474-2482.
  • 4郑博,毛剑飞,梁荣华.基于纹理权重的AAM人脸特征点检测方法[J].浙江工业大学学报,2012,40(6):661-665. 被引量:6
  • 5WALLACE G K. The JPEG still picture compression standard[J]. IEEE transactions on consumer electronics-1992-38(1) :153-165.
  • 6TAUBMAN D S, MARCELLIN M W. JPEG2000: imagecompression fundamentals, standards and practice[M]. Berlin,German: Springer,2002.
  • 7TURK M, PENTLAND A. Eigen faces for recognition[J].Cognitive neuroscience, 1991,3(1) : 72-86.
  • 8SWETS D L, WENG J. Using discriminate eigen features forimage retrieval[J]. IEEE transactions on pattern analysis andmachine intelligence, 1996,18(8) ; 831-836,.
  • 9WONG M, LANE T , A kth nearest neighbor clustering procedure[J]. Royal statistical society, series B,methodological,1983,45(3):362-368.
  • 10CORTES C, VAPNIC V. Support vector networks[J]. Machinelearning ,1995,20(1):1-25.

二级参考文献40

  • 1王磊,邹北骥,彭小宁,周凌.一种改进的提取人脸面部特征点的AAM拟合算法[J].电子学报,2006,34(8):1424-1427. 被引量:13
  • 2张培,吴亚锋.AAM反向合成匹配算法及其性能分析[J].计算机工程与应用,2007,43(18):47-50. 被引量:4
  • 3AHN L V, BLUM M, LANGFORD J. Telling humans and computers apart(automatically) or How lazy cryptographers do AI[R]. Pennsylvania, USA, CMU Press,2002.
  • 4MORI G, MALIK J. Recognizing objects in adversarial clutter:breaking a visual CAPTCHA[C]//Computer Vision and Pattern Recognition. IEEE Computer Society Conference on. New York, USA: IEEE Press,2003(1):134-141.
  • 5YAN J, AHMAD A S E. A Low-cost attack on a microsoft CAPTCHA[C]//Proceedings of the 15th ACM Conference on Computer and Communications Security. New York, USA: ACM Press, 2008: 543-554.
  • 6CHELLAPILLA K, LARSON K, SIMARD P, et al. Computers beat humans at single character recognition in readingbased Human Interaction Proofs[C]//ln Proceedings of the Second Conference on Email and Anti-Spam. CA, USA: Stanford University, 2005.
  • 7GONZALEZ R C,WOODSR E,EDDINS S L.数字图像处理(MATLAB版)[M].阮秋琦,译.2版.北京:电子工业出版社,2007.
  • 8KIM Y D, LEE G C. Tool requirements planning in a flexible manufacturing system with an automatic tool transporter[J]. IEEE Transactions on Robotics and Automation,2009,17(6) : 795-804.
  • 9GHORAI S, MUKHERJEE A. Automatic defeet detection on hot-rolled flat steel products[J]. IEEE Transactions on Instru- mentation and Measurement, 2013,62 (3) : 612-621.
  • 10HATSUDA T, AOKI Y, ECHIGO H. Ku-band long distance site-diversity(SD) characteristics using new measuring system [J]. IEEE Transactions on Antennas and Propagation,2010, 52(6) : 1481-1491.

共引文献36

同被引文献79

引证文献10

二级引证文献42

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部