期刊文献+

解变分不等式的简单牛顿法的收敛性

Convergence of Newton method for solving variational inequalities
下载PDF
导出
摘要 牛顿法作为求解变分不等式问题的一个重要方法,它的收敛性一直是各位学者研究的一个核心问题.当变分不等式中的函数F在B(x_0,ρ)内满足γ-条件时,证明了由牛顿法产生的迭代点列是适定的,而且解的序列可以被构造出来的{tn}序列控制收敛到一个变分不等式的最优解.考虑到F在B(x_0,ρ)内满足γ-条件这个区域性条件给进一步的研究带来了困难,因此引入了解析函数,给出了F是解析函数条件下的牛顿法的收敛性结果.数值实验表明算法是有效的. Newton method is an important method for solving the problem of variational inequalities,the convergence of the algorithm has been a core issue for the scholars.When the function F in variational inequalities satisfiesγ-conditions in B(x_0,ρ),it is proved that the iterative dot sequence produced by the Newton method is valid and can be controlled to converge to an optimal solution of the variational inequalities by a sequence{tn},which is constructed out.Taking into account that the regional conditions of the function F satisfies γ-conditions in B(x_0,ρ)makes more difficult for further study,analytic functions is introduced.The convergence of Newton method under the condition that the F is analytic function is given.Numerical experiments show that the algorithm is effective.
作者 周彪 李素兰
出处 《浙江工业大学学报》 CAS 北大核心 2016年第4期461-465,共5页 Journal of Zhejiang University of Technology
基金 国家自然科学基金资助项目(11371325)
关键词 牛顿法 变分不等式 Γ-条件 半局部收敛 解析函数 Newton method variational inequalities γ-conditions semilocal convergence analytic functions
  • 相关文献

参考文献16

  • 1HARTMAN P, STAMPACCHIA G. On some nonlinear sllipticdifferential functional equations [J]. Acta mathematica,1966,115:153-188.
  • 2FAROUQ N E. Pseudomonotone variational inequalities:convergence of proximal methods [J].Journal of optimizationtheory and applications,2001,109(2) ;311-326.
  • 3SALMON G,NGUYEN V H,STRODIOT J J. Coupling theauxiliary problem principle and epiconvergence theory to solvegeneral variational inequalities[J]. Journal of optimization theoryand applications, 2000, 104(3) ; 629-657.
  • 4PENG J M ,FUKUSHIMA M. A hybrid Newton method forsolving the variational inequalities problems via the d-gap functiona[J]. Mathmatical programming,1999,86 : 367-386.
  • 5WUJ H. Long-step primal path-following algorithm for monotonevariational inequalities problems[J]. Journal of optimizationtheory and applications, 1998,99(2) : 509-531.
  • 6FAROUQ N E. Pseudomonotone variational inequalities: convergenceof the auxiliary problem method[J]. Journal of optimizationtheory and applications,2001, 111 (2) :305-326.
  • 7KANTOROVICH L V ,AKILOV G P. Functional analtsis[M];Qxford&Pergamon 1982.
  • 8KANTOROVICH L V. Functional analysis and applied mathematics[J]. Uspekhi matematicheskikh nauk,1948(3) : 89-185.
  • 9SMALE S. Newton's method estimates from data at one point[M]. New York: Spring,1986 : 185-196.
  • 10SMALE S. Compexity theory and numerical analysis[J] Actanumber,1997(6) ;523-551.

二级参考文献11

  • 1王兴华,科学通报,1996年
  • 2王兴华,Contemp Math,1994年,163卷,155页
  • 3王兴华,Proceedings of the Smalefest,1993年
  • 4Huang Zhengda,J Comput Appl Math,1993年,47卷,211页
  • 5王兴华,在点估计下Euler级数,Euler迭代族以及Halley迭代族的收敛性,1990年
  • 6王兴华,中国科学.A,1989年,1卷,34页
  • 7王兴华,科学通报,1980年,数理化专辑,36页
  • 8王兴华,科学通报,1978年,3期,23页
  • 9王兴华,杭州大学学报,1977年,2期,16页
  • 10王兴华,科学通报,1975年,20卷,12期,558页

共引文献17

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部