期刊文献+

基于二元对称多项式的公平秘密共享方案 被引量:8

Fair secret sharing scheme based on symmetric bivariate polynomial
下载PDF
导出
摘要 基于二元对称多项式,提出一种新的公平(tn)门限秘密共享方案,能够确保:所有参与者都合法且诚实时,均能恢复正确的秘密;存在欺骗者时,所有参与者都无法恢复正确的秘密。该方案利用二元对称多项式不仅为任意两个参与者提供会话密钥;结合离散对数,在确保每个share持有者拥有较少share的情况下,使得Dealer可以选取足够长的秘密序列,从而确保方案的公平性。此外,方案在异步环境下也能实现公平秘密恢复。与Harn方案相比,该方案更加公平和灵活。 Based on symmetric bivariate polynomial, this paper proposes a new fair(t n) threshold secret sharing scheme,which can guarantee that each participant can recover the correct secret if all participants are legal and honest; when there is a cheater, all participants are unable to recover the correct secret. In the proposed scheme, a symmetric bivariate polynomial is used to generate session key for any two participants; moreover, combined with discrete logarithm, the symmetric bivariate polynomial enables the scheme to choose a sufficiently long sequence of secrets to guarantee the fairness while each participant holds a small number of shares. Additionally, the scheme also can achieve fair secret recovery in asynchronous environment. Compared with Harn's scheme, the proposed scheme is fairer and more flexible.
出处 《计算机工程与应用》 CSCD 北大核心 2016年第13期38-42,109,共6页 Computer Engineering and Applications
基金 国家自然科学基金(No.61572454 No.61472382 No.61232018)
关键词 秘密共享 欺骗者 二元对称多项式 公平性 secret sharing cheater symmetric bivariate polynomial fairness
  • 相关文献

参考文献16

  • 1Shamir A.How to share a secret[J].Communication ofthe ACM,1979,22(11):612-613.
  • 2Blakley G R.Safeguarding cryptographic keys[C]//Proceedingsof the National Computer Conference.New York:AFIPS,1979:313-317.
  • 3Chor B,Goldwasser S,Micali S,et al.Verifiable secretsharing and achieving simultaneity in the presence offaults[C]//Proceedings of IEEE 26th Symposium on Foundationsof Computer Science(FOCS),1985:383-395.
  • 4Feldman P.A practical scheme for non-interactive verifiablesecret sharing[C]//Proceedings of IEEE 28th AnnualSymposium on Foundations of Computer Science,1987:427-438.
  • 5Kaya K,Selcuk A A.A verifiable secret sharing schemebased on the Chinese remainder theorem[C]//Progressin Cryptology-INDOCRYPT 2008.Berlin Heidelbeng:Spriger,2008:414-425.
  • 6Harn L,Lin C.Strong (n tn) verifiable secret sharingscheme[J].Information Sciences,2010,180(16):3059-3064.
  • 7Tompa M,Woll H.How to share a secret with cheaters[J].Journal of Crypto,1988,1(2):133-138.
  • 8Laih C S,Lee Y C.V-fairness (tn) secret sharingscheme[C]//Proceedings of IEEE Conference on Computersand Digital Techniques,1997:245-248.
  • 9Ong S J,Parkes D V.Fairness with an honest minorityand a rational majority[C]//Proceedings of TCC 2009,2009,5444:36-53.
  • 10Tian Y,Ma J,Peng C,et al.Fair (tn) threshold secretsharing scheme[J].IET Information Security,2013,7(2):106-122.

同被引文献49

引证文献8

二级引证文献13

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部