期刊文献+

FRBF神经网络分类器设计新方法 被引量:1

New devise method of FRBF neural network classifier
下载PDF
导出
摘要 提出了一种结合模糊径向基函数网络和稀疏V-SVM的二分类器构建方法。FRBF初始网络中的RBF隶属度函数中心由随机抽取的样本确定,而RBF隶属度函数的宽度由样本各个属性的分布方差确定。根据FRBF网络输出为模糊基函数线性组合的特点,在后件参数学习中引入具有结构风险最小化和属性选择功能的稀疏V-SVM方法,在对输出层的参数进行学习的同时进行模糊基函数的约简。若干UCI标准数据集分类测试结果验证了该分类器的有效性。 A binary classifier based on the Fuzzy Radial Basis Function Network(FRBFN)and SP-V-SVM is presented.The initial architecture of the network is constructed with the sample from dataset. The centers of Gaussian membershipfunctions of each membership variable in the fuzzy layer are determined by the samples randomly extracted in the trainingdata set, whereas the variances depend on the variance of the training data set. The parameters of output layer are accomplishedbased on the criterion of the max gap between classes. What are more, the nodes of the network sparsity constraintsare introduced to realize nodes reduction. The classification tests on several UCI standard data sets are conductedand the results show the effectiveness of the classifier.
出处 《计算机工程与应用》 CSCD 北大核心 2016年第13期157-161,共5页 Computer Engineering and Applications
基金 国家自然科学基金(No.61300149) 2014年江苏省青蓝工程项目
关键词 模糊径向基函数网络 支撑向量机 约简 分类 Fuzzy Radial Basis Function Network(FRBFN) Support Vector Machine(SVM) reduction classifier
  • 相关文献

参考文献15

  • 1Hornik K,Stinchcombe M,White H.Multilayer feedforwardnetworks are universal approximators[J].Neural Networks,1989,2(5):359-366.
  • 2任艳青,方灶军,徐德,谭民.基于模糊神经网络的乒乓球旋转飞行轨迹模式分类[J].控制与决策,2014,29(2):263-269. 被引量:13
  • 3吕海波,赵艳林,孔令伟,刘玉梅.自适应模糊神经网络在膨胀土胀缩等级分类中的应用[J].岩土力学,2006,27(6):908-912. 被引量:18
  • 4Kuruvilla J,Gunavathi K.Lung cancer classification usingneural networks for CT images[J].Computer Methods andPrograms in Biomedicine,2014,113(1):202-209.
  • 5Zhang G P.Neural networks for classification:A survey[J].IEEE Transactions on Systems,Man,and Cybernetics:Part C Applications and Reviews,2000,30(4):451-462.
  • 6Juang Chiafeng,Chiu Shihhsuan,Chang Shuwew.A selforganizingTS-type fuzzy network with support vectorlearning and its application to classification problems[J].IEEE Transactions on Fuzzy Systems,2007,15(5):998-1007.
  • 7郝晓丽,张靖.基于改进自适应聚类算法的RBF神经网络分类器设计与实现[J].计算机科学,2014,41(6):260-263. 被引量:21
  • 8Lin C T,Yeh C M,Hsu C F.Fuzzy neural network classificationdesign using support vector machine[C]//Proceedingsof International Symposium on Circuits andSystems,Vancouver,Canada,2004,5:724-727.
  • 9Lin C T,Yeh C M,Liang S F,et al.Support-vector-basedfuzzy neural network for pattern classification[J].IEEETrans on Fuzzy Syst,2006,14(1):31-41.
  • 10Alba E,Chicano J F.Training neural networks withGA hybrid algorithms[C]//Proceedings of Genetic andEvolutionary Computation(GECCO 2004).Berlin Heidelberg:Springer,2004:852-863.

二级参考文献43

共引文献49

同被引文献20

引证文献1

二级引证文献2

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部