期刊文献+

结合区域生长与模糊连接度的肺气管树分割 被引量:3

Segmentation of pulmonary airway tree by combining region growing and fuzzy connectedness
下载PDF
导出
摘要 针对CT图像中因噪声、密度分布不均匀和边界模糊等因素造成肺气管树难以准确分割的问题,提出了一种区域生长与模糊连接度相结合的肺气管树分割流程。通过阈值化及形态学闭操作提取出肺实质以定义感兴趣区域;采用改进迟滞阈值区域生长法预分割出较粗气管并结合局部体积突变指标抑制侧向泄漏;将预分割的结果进行骨架化及修剪来进一步提取出分支点,并以此作为后续分割的新种子点;根据CT图像的灰度均匀性与气管的管状结构特征来构造亲和力函数以计算种子点与其他体素的模糊连接度,并选取合适的阈值对模糊连接度进行阈值分割以提取出完整气管树。实验采用了20例来自EXACT’09竞赛提供的公开数据,分别从分支点、分支数量和分支数比率等方面进行了量化评估。该方法能在较低泄漏情况下成功检测出参考标准中一半以上的分支,平均分支数比率达到59.7%。实验结果表明,该方法可对肺气管树进行较精确的分割。 Considering the noise, intensity inhomogeneity and boundary fuzzy in CT image, it is difficult to segment pulmonaryairway tree accurately. To improve the segmentation results, 3D multi-seeded fuzzy connectedness algorithm isproposed. Firstly, the region of interest is defined by extracting the lung parenchyma with a global threshold and a morphologicalclosing operation. Secondly, the trachea and big bronchi are pre-segmented using an improved region growingmethod on basis of an iterative hysteresis threshold, and a local volume explosion index is adopted to suppress the lateralleakage. Then, branch points are extracted from the skeleton which is extracted and pruned from the pre-segmentationresults, and these points as the new seed points for subsequent segmentation. Finally, the fuzzy connectedness between theseed and any point is calculated by constructing affinity function according to intensity homogeneity and tubular structurecharacteristics of the trachea. Besides, the fuzzy connectedness is segmented by choosing an appropriate threshold. Thealgorithms are tested with the publicly available data of the EXACT’09 challenge, and the quantitative evaluation is conductedwith the node number, branch number and branch ratio on the 20 test CT cases by comparing with a manual reference.The proposed method is able to detect more than half of branches in the reference and the mean numbers of detectedbranches reach 59.7% under a relatively low leakage rate. The experimental results show that the method has more accuratesegmentation results.
作者 彭双 肖昌炎
出处 《计算机工程与应用》 CSCD 北大核心 2016年第13期201-205,共5页 Computer Engineering and Applications
基金 国家自然科学基金(No.61172160) 湖南省自然科学常德联合基金(No.12JJ9019)
关键词 气管树分割 区域生长 模糊连接度 CT图像 airway tree segmentation region growing fuzzy connectedness CT image
  • 相关文献

参考文献15

  • 1Bauer C,Bischof H,Beichel R.Segmentation of airwaysbased on gradient vector flow[C]//Proceedings of the2nd International Workshop on Pulmonary Image Analysis.London,UK:CreateSpace Independent Publishing Platform,2009:191-201.
  • 2Feuerstein M,Kitasaka T,Mori K.Adaptive branch tracingand image sharpening for airway tree extraction in 3-Dchest CT[C]//Proceedings of the 2nd International Workshopon Pulmonary Image Analysis.London,UK:CreateSpaceIndependent Publishing Platform,2009:273-284.
  • 3Lee J,Reeves A P.Segmentation of the airway tree fromchest CT using local volume of interest[C]//Proceedingsof the 2nd International Workshop on Pulmonary ImageAnalysis.London,UK:CreateSpace Independent PublishingPlatform,2009:333-340.
  • 4Lo P,Sporring J,De Bruijne M.Multiscale vessel-guidedairway tree segmentation[C]//Proceedings of the 2nd InternationalWorkshop on Pulmonary Image Analysis.London,UK:CreateSpace Independent Publishing Platform,2009:323-332.
  • 5Irving B,Taylor P,Todd-pokropek A.3D segmentation ofthe airway tree using a morphology based method[C]//Proceedings of the 2nd International Workshop on PulmonaryImage Analysis.London,UK:CreateSpace IndependentPublishing Platform,2009:297-307.
  • 6王雷,高欣,张桂芝.形态膨胀的3D区域生长气管分割算法[J].生物医学工程学杂志,2013,30(4):679-683. 被引量:8
  • 7姜慧研,张晔.基于改进的区域生长法的气管与支气管分割[J].东北大学学报(自然科学版),2009,30(2):191-194. 被引量:8
  • 8Lo P,Van Ginneken B,Reinhardt J,et al.Extraction ofairways from CT(EXACT’09)[J].IEEE Transactions onMedical Imaging,2012,31(11):2093-2107.
  • 9Lee T C,Kashyap R L,Chu C N.Building skeletonmodels via 3-D medial surface axis thinning algorithms[J].CVGIP:Graphical Models and Image Processing,1994,56(6):462-478.
  • 10Kerschnitzki M,Kollmannsberger P,Burghammer M,et al.Architecture of the osteocyte network correlates withbone material quality[J].Journal of Bone and MineralResearch,2013,28(8):1837-1845.

二级参考文献45

  • 1姜慧研,司岳鹏,雒兴刚.基于改进的大津方法与区域生长的医学图像分割[J].东北大学学报(自然科学版),2006,27(4):398-401. 被引量:16
  • 2冈萨雷斯 R C.数字图像处理[M].2版.北京:电子工业出版社,2006:479-498.
  • 3Agus Z A, Akira A. Image segmentation by histogram thresholding using hierarchical cluster analysis [J]. Pattern Recognition Letter, 2006,27(13) : 1515 - 1521.
  • 4Carevic D, Caelli T. Region-based coding of color image using Karhunen-Loeve transform[J]. Graphics Models and Image Processing, 1997,59 : 27 - 38.
  • 5Otsu N. A threshold selection method from gray-level histograms[J]. IEEIC Transactions on Systems,Man,and Cybernetics, 1979,9(1) :62 - 66.
  • 6Yen J C, Chang F J, Chang S. A new criterion for automatic multilevel thresholding [ J ]. IEEE Transactions on Image Processing, 1995,4 (3) : 370 - 378.
  • 7Fan J P, Zeng G H, Mathurin B. Seeded region growing: an extensive and comparative study [J]. Pattern Recognition Letters, 2005,26(8) : 1139 - 1156.
  • 8Adams R, Bischof L. Seeded region growing [J]. IEEE Transactions on Patter. Analysis and Machine Intelligence, 1994,16(6):641 -647.
  • 9Mehnert A, Jackway P. An improved seeded region growing algorithm[J ]. Pattern Recognition Letters, 1997, 18 (10) : 1065 -1071.
  • 10Chen J X, Liu S. A medical image segmentation method based on watershed transform [ C ] // Computer and Information Technology. Washington D C: IEEE Computer Society, 2005 : 634 - 639.

共引文献42

同被引文献42

引证文献3

二级引证文献21

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部