期刊文献+

基于拓展稀疏表示模型和LC-KSVD的人脸识别 被引量:4

Face recognition based on extend sparse representation and LC-KSVD
下载PDF
导出
摘要 为了提高人脸的识别率和识别速度及其识别的鲁棒性,提出了基于拓展稀疏表示模型和LC-KSVD(Label Consist K-SVD)的人脸识别算法。针对字典学习中只包含表示能力没有包含类别信息的问题,在原始的稀疏表示模型中添加了残差向量作为系数修正向量,使得拓展稀疏表示模型具有更强的鲁棒性;在字典学习中添加稀疏编码和分类器参数约束项,通过字典学习同时更新稀疏编码和分类器参数,使字典中包含很好的表示能力和判别分类能力。实验结果表明,基于拓展稀疏表示模型和LC-KSVD的人脸识别具有高识别率和低识别速度,并且有很好的鲁棒性。 To improve the face recognition rate, speed and robustness, this paper proposes a face recognition algorithmbased on extended sparse representation model and LC-KSVD(Label Consist K-SVD). For solving the problem that dictionarylearning only contains representation ability but no class information, the algorithm adds residual vector as coefficientamending vector into original sparse representation model, making the extended model have stronger robustness.The algorithm also adds sparse coding and classifier parameter constraints into the process of dictionary learning andupdates sparse coding and classifier parameters in the process, making the dictionary possess good representation and discriminationability. The experimental results show that the algorithm has high recognition rate, low recognition speed andgood robustness.
出处 《计算机工程与应用》 CSCD 北大核心 2016年第13期206-211,共6页 Computer Engineering and Applications
基金 国家自然科学基金(No.61202439) 湖南省教育厅优秀青年项目(No.12B003) 湖南省交通运输厅科技进步与创新项目(No.201334)
关键词 稀疏表示 字典学习 人脸识别 LC-KSVD算法 sparse representation dictionary learning face representation LC-KSVD(Label Consist K-SVD)
  • 相关文献

参考文献14

  • 1孙冬梅,裘正定.生物特征识别技术综述[J].电子学报,2001,29(z1):1744-1748. 被引量:143
  • 2陈伏兵,高秀梅,张生亮,杨静宇.基于分块PCA的人脸识别方法[J].小型微型计算机系统,2006,27(10):1943-1947. 被引量:10
  • 3Yu H,Yang J.A direct LDA algorithm for high dimensionaldata with application to face recognition[J].Journalof Pattern Recognition,2001,34(10):2067-2070.
  • 4Kim J,Choi J,Yi J.Effective representation using ICAfor face recognition robust to local distortion and partialocclusion[J].IEEE Transactions on Pattern Analysisand Machine Intelligence,2005,27(12):1977-1981.
  • 5Elad M.Sparse and redundant representations:From theoryto application in signal and image processing[M].Berlin:Springer,2010:56-60.
  • 6孙玉宝,肖亮,韦志辉,等.基于稀疏表示的低比特率可伸缩图像编码算法研究[J].光学学报,2008,28(S2):77-81.
  • 7Gao S H,Tsang W H,Chia L T.Kernel sparse representationfor image classification and face recognition[C]//Proc of European Conference on Computer Vision,Greece,Sep,2010:1-14.
  • 8杨丽娟,张白桦,叶旭桢.快速傅里叶变换FFT及其应用[J].光电工程,2004,31(B12):1-3. 被引量:98
  • 9郭彤颖,吴成东,曲道奎.小波变换理论应用进展[J].信息与控制,2004,33(1):67-71. 被引量:50
  • 10Wright J,Yang M,Ganesh A,et al.Robust face recognitionvia sparse representation[J].IEEE Transactions onPattern Analysis and Machine Intelligence,2009,31(2):210-227.

二级参考文献64

  • 1杨健,杨静宇,叶晖.Fisher线性鉴别分析的理论研究及其应用[J].自动化学报,2003,29(4):481-493. 被引量:97
  • 2[1]Glossary of biometrics terms [R].1998,Association for biometrics(AfB),Intemational Computer Security Association (ICSA).
  • 3[2]R Chellappa,et al.Humnan and machine recognition of face:a survey[J].Proc.IEEE,1995,83 (5):705-740.
  • 4[3]R Brunelli,T Poggio.Face recognition:features versus templates [J].IEEE Trans.PAMI,1993,15(10):1042-1052.
  • 5[4]D L Swets,J Weng.Using discriminant eigenfeatures for image retrieval[J].IEEE Trans.PAMI,1996,18 (8):831-836.
  • 6[5]B Moghaddam,et al.Probabilistic visual recognition for object recognition [J].IEEE Trans.PAMI,1997,19(7) :696-710.
  • 7[6]S Y Lee,et al.Recognition of humman front faces using knowledgebased feature extraction and neunofuzzy algorithm [J].Pattern Recognition,1996,29(11):1863-1876.
  • 8[7]S Lawtonce,et al.Face recognition:a convolutional neural-network approach [J].IEEE Trans.NN,1997,8(1):98-113.
  • 9[9]J Zhang,et al.Face recognition:eigenface,elastic matching,and neural nets [J].Proc.IEEE,1997,85(9):1422-1435.
  • 10[10]L Wiskott,et al.Face recognition by elastic bunch graph matching [J].IEEE Trans.PAMI.1997,19(6) :775-779.

共引文献297

同被引文献19

引证文献4

二级引证文献9

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部