期刊文献+

In组分梯度渐变的n-i-p结构InGaN太阳能电池性能研究 被引量:1

n-i-p Type InGaN Solar Cells with Graded In Composition
下载PDF
导出
摘要 为了优化InGaN太阳能电池结构并有效地指导实际电池的制备,研究了n-i-p(p层在下)In组分梯度渐变结构的InGaN太阳能电池的性能特征。通过APSYS软件模拟计算,对比采用p-i-n渐变结构(p层在上)和n-i-p渐变结构(p层在下)的InGaN太阳能电池的器件性能。结果表明,采用n-i-p渐变结构的InGaN电池,i-InGaN层在低In组分下没有明显的优势,而在高In组分下的器件性能较好。在In组分为0.62时,转换效率最高达到8.48%。分析表明,p层在下的n-i-p渐变结构使得InGaN电池的极化电场与耗尽区的内建电场方向一致,有利于载流子的输运。采用n-i-p渐变结构有利于制备高性能的InGaN太阳能电池。 In order to optimize InGaN solar cell( SC) structures and effectively guide the preparation,the properties of n-i-p InGaN SC structures with graded In composition were investigated.Through APSYS simulation software,the performances of p-i-n and n-i-p SC structures with graded In composition were compared. It is found that n-i-p structures don't have obvious advantage in the device performance over p-i-n ones when In composition of i-InGaN layer is low,which yet presents better performance with higher In composition. When In composition is 0. 62,the SC conversion efficiency reaches 8. 48%. The further analysis indicates that the polarization electric field in InGaN layer has the same directions with the built-in one in the depletion region for the case of n-i-p SC structures,which is very beneficial for carrier transport. The n-i-p SC structures with graded In composition are proven to be beneficial for high performance InGaN SCs.
出处 《发光学报》 EI CAS CSCD 北大核心 2016年第6期682-687,共6页 Chinese Journal of Luminescence
基金 国家自然科学基金(61306108) 教育部留学回国人员科研启动基金(2013693)资助项目
关键词 INGAN 太阳能电池 n-i-p结构 InGaN solar cell n-i-p structure
  • 相关文献

参考文献19

  • 1WU J, WALUKIEWICZ W, YU K M, et al.. Superior radiation resistance of Inl_,GaxN alloys: full-solar-spectrum photo- voltaic material system [J]. J. Appl. Phys. , 2003, 94 (10) :6477-6482.
  • 2DAVYDOV V Y, KLOCHIKHIN A A, SEISYAN R P, et al.. Absorption and emission of hexagonal InN. Evidence of narrow fundamental band gap [J]. Phys. Stat. Sol. (b), 2002, 229(3) :R1-R3.
  • 3SINGH R, DOPPALAPUDI D, MOUSTAKAS T D, et al.. Phase separation in InGaN thick films and formation of InGaN/ GaN double heterostructures in the entire alloy composition [J]. Appl. Phys. Lett. , 1997, 70(9) :1089-1091.
  • 4EL-MASRY N A, PINER E L, LIU S X, et al.. Phase separation in InGan grown by metalorganic chemical vapor deposi- tion [J]. Appl. Phys. Lett., 1998, 72(1):40-42.
  • 5BAE S Y, SHIM J P, LEE D S, et al.. Improved photovoltaic effects of a vertical-type InGaN/GaN multiple quantum well solar cell [J]. Jpn. J. Appl. Phys., 2011, 50(9):092301-1-5.
  • 6BAI J, YANG C C, ATHANASIOU M, et al.. Efficiency enhancement of InGaN/GaN solar cells with nanostructures [J]. Appl. Phys. Lett., 2014, 104(5):051129-1-4.
  • 7SHEU J K, CHEN F B, WU S H, et al.. Vertical InGaN-based green-band solar cells operating under high solar concen- tration up to 300 suns [J]. Opt. Express, 2014, 22($5) :A1222-A1228.
  • 8CHANG Y A, CHEN F M, TSAI Y L, et al.. Fabrication and characterization of back-side illuminated InGaN/GaN solar cells with periodic via-holes etching and Bragg mirror processes [J]. Opt. Express, 2014, 22($5) :A1334-A1342.
  • 9CAI X, WANG Y, CHEN B, et al.. Investigation of InGaN p-i-n homojunction and heterojunction solar cells [J]. IEEE Photon. Technol. Lett. , 2013, 25(1) :59-62.
  • 10Jr WIERER J J, FISCHER A J, KOLESKE D D. The impact of piezoelectric polarization and nonradiative recombination on the performance of (0001) face GaN/InGaN photovohaic devices [J]. Appl. Phys. Lett,, 2010, 96(5) :051107-1-3.

同被引文献3

引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部