期刊文献+

基于改进RM界的二次损失函数支持向量机模式选择

Model Selection for 2-norm Support Vector Machine Based on Improved RM Bound
下载PDF
导出
摘要 半径-间隔界中最小包含球半径R的计算需要求解二次规划问题,增加了算法的计算量。为提高计算效率,提出一种基于改进RM界的二次损失函数支持向量机模式选择。用所有训练样本的最大距离D逼近半径R,用D替换R构成新的RM界,然后基于改进的RM界对二次损失函数支持向量机(L2-SVM)进行模式选择,并用梯度下降法调节最优参数。对算法的分类精度和计算效率进行仿真实验讨论,结果表明,与基于RM界的模式选择相比,虽然该算法的分类精度没有明显改变,但其计算效率至少提高1倍。 Calculating the radius of radius-margin( RM) bound by solving the quadratic programming adds the computational overload. In order to solve this problem,we construct a new RM bound which approximates the radius by using the maximum pairwise distance over all points. Then based on new RM bound,the model selection of 2-norm SVM( L2-SVM) was conducted,and automatically adjusted parameters by employing the gradient descent algorithm. Finally,the classification accuracy and computational efficiency of the algorithm were discussed through simulation experiments. The experimental results show that the classification accuracy of the proposed algorithm is not significantly changed compared with the model selection based on RM bound,but the computational efficiency is improved at least one fold.
出处 《西华大学学报(自然科学版)》 CAS 2016年第3期57-62,共6页 Journal of Xihua University:Natural Science Edition
基金 国家科技支撑计划项目西藏自然科学博物馆数字馆关键技术研究及集成示范(2011BAH26B01) 四川省教育厅自然科学重点项目(11ZA004) 西华大学研究生创新基金项目(ycjj2014032)
关键词 模式选择 支持向量机 半径-间隔界 梯度下降法 model selection support vector machine radius-margin bound gradient descent algorithm radius-margin(RM) bound
  • 相关文献

参考文献16

  • 1Corinna Cortes,Vladimir Vapnik.Support-vector Networks[J].Machine Learning,1995,20(3):273.
  • 2丁世飞,齐丙娟,谭红艳.支持向量机理论与算法研究综述[J].电子科技大学学报,2011,40(1):2-10. 被引量:912
  • 3Maldonado S,Weber R,Famili F.Feature Selection for Highdimensional Class-imbalanced Data Sets using Support Vector Machines[J].Inf Sci,2014,286:228.
  • 4Tian Yingjie,Ping Yuan.Large-scale Linear Nonparallel Support Vector Machine Solver[J].Neural Networks,2013,50:166.
  • 5Reitmaier T,Sick B.The Responsibility Weighted Mahalanobis Kernel for Semi-Supervised Training of Support Vector Machines for Classification[J].Inf Sci,2015,323:179.
  • 6Gonen M,Alpaydn E.Multiple Kernel Learning Algorithms[J].Mach Learn,2011,12:2211.
  • 7Gomes T,Prudencio R,Soares C,et al.Combining Metalearning and Search Techniques to Select Parameters for Support Vector Machines[J].Neurocomputing,2012,75(1):3.
  • 8Zhao M Y,Ren J,Ji L P,et al.Parameter Selection of Support Vector Machines and Genetic Algorithm based on Change Area Search[J].Neural Computing and Applications,2012,21(1):1.
  • 9魏峻.一种有效的支持向量机参数优化算法[J].计算机技术与发展,2015,25(12):97-100. 被引量:17
  • 10Shaoa C,Paynabarb K,Kima T H.Feature Selection for Manufacturing Process Monitoring using Cross Validation[J].Manuf Syst,2013,32:550.

二级参考文献56

共引文献953

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部