期刊文献+

煤液化热高压分离器煤粉漂移特性数值模拟与优化 被引量:2

Numerical simulation and optimization on pulverized coal drifting characteristics in high temperature and high pressure separator
下载PDF
导出
摘要 为揭示煤液化热高压分离器(简称"热高分")内的煤粉漂移规律,基于热高分的结构特性和多相流物性参数,建立物理模型,并采用VOF(volume of fluid)模型和DPM(discrete phase model)模型,数值分析进口液固两相中固相质量分数、颗粒粒径对煤粉漂移特性的影响。研究发现:在气液交界面处,煤粉颗粒平均质量浓度最大,并随进口固相质量分数的增加而增大;小颗粒对气流的跟随性好,故气相出口的煤粉漂移率与颗粒粒径呈负相关关系;当进口固相质量分数增大到7%以上时,对应同一颗粒粒径下煤粉漂移率基本不变。通过在热高分上部增加45°倾斜挡板,发现气相出口处煤粉漂移率从2.03%下降到0.88%。 To discover the pulverized coal drifting law in the high temperature and high pressure( HTHP) separator of coal liquefaction unit,the physical model was established on the basis of separator's structure and physical characteristics of multiphase flow,the volume of fluid( VOF) model and the discrete phase model( DPM) were used in this numerical simulation to analyze the influence of solid phase mass concentration and particle diameter on the pulverized coal drifting characteristics in HTHP separator. The results show that the mean particle concentration is the largest at gas-liquid interface,and it increases with solid phase mass concentration. There is a negative correlation between pulverized coal drifting ratio in gas outlet and particle size because small particles follow airflow well,and the pulverized coal drifting ratio basically remains unchanged in the same particle diameter when solid phase mass concentration increases to more than 7%. The pulverized coal drifting ratio can be reduced from 2. 03% to 0. 88% by using a 45° inclined baffle in the upper part of HTHP separator.
出处 《煤炭学报》 EI CAS CSCD 北大核心 2016年第4期1004-1010,共7页 Journal of China Coal Society
基金 国家自然科学基金委员会-神华集团有限公司煤炭联合基金资助项目(U1361107) 浙江省公益技术应用研究计划资助项目(2015C31013) 浙江理工大学521人才培养计划资助项目
关键词 煤液化 热高压分离器 煤粉漂移 数理模型 coal liquefaction high temperature and high pressure separator pulverized coal drifting physical model
  • 相关文献

参考文献6

二级参考文献56

  • 1李强,冯明霞,邹宗树.气粉两相流壅塞现象初探[J].安徽工业大学学报(自然科学版),2003,20(z1):76-80. 被引量:4
  • 2柳朝晖,翁磊,贺铸,郑楚光.三维槽道两相湍流的大涡模拟[J].华中科技大学学报(自然科学版),2004,32(11):10-12. 被引量:2
  • 3王晓鸣,李强,邹宗树,沈峰满.气粉两相流壅塞现象的实验研究[J].过程工程学报,2005,5(6):591-596. 被引量:6
  • 4Agrawal, K., Loezos, P. N., Syamlal, M., & Sundaresan, S. (2001). The role of meso-scale structures in rapid gas-solid flows.Journal of Fluid Mechanics, 445, 151-185.
  • 5Beetstra, R., van der Hoef, M. A., & Kuipers, J. A. M. (2006). A Lattice-Boltzmann simulation study of the drag coefficient of clusters of spheres. Computers &Fluids, 35, 966-970.
  • 6Benyahia, S., Arastoopour. H., Knowlton, T. M., & Massah, H. (2000). Simulation of particles and gas flow behavior in the riser section of a circulating fluidized bed using the kinetic theory approach for the particulate phase. Powder Technology, 112. 24-33.
  • 7Bird, R. B., Stewart, W. E., & Lightfoot, E. N. (2001). Transport phenomena (2nd ed.). New York: Wiley.
  • 8Chapman, S., & Cowling, T. G. (1970). The mathematical theory of non-uniform gases: An account of the kinetic theory of viscasity, thermal conduction and diffusion in gases. Cambridge: Cambridge University Press.
  • 9Crowe, C. T., Sommerfeld, M., & Tsuji, Y. (1997). Multiphaseflows with droplets and particles. Boca Raton: CRC Press.
  • 10Deen, N. G., van Sint Annaland, M., van der Hoef, M. A., & Kuipers, J. A. M. (2007). Review of discrete particle modeling of fiuidized beds. Chemical Engineering Science, G2, 28-44.

共引文献136

同被引文献16

引证文献2

二级引证文献8

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部