期刊文献+

Scanning Tunneling Electron Transport into a Kondo Lattice

Scanning Tunneling Electron Transport into a Kondo Lattice
原文传递
导出
摘要 We theoretically present the results for a scanning tunneling transport between a metallic tip and a Kondo lattice.We calculate the density of states(DOS)and the tunneling current and differential conductance(DC)under different conduction-fermion band hybridization and temperature in the Kondo lattice.It is found that the hybridization strength and temperature give asymmetric coherent peaks in the DOS separated by the Fermi energy.The corresponding current and DC intensity depend on the temperature and quantum interference effect among the c-electron and f-electron states in the Kondo lattice. We theoretically present the results for a scanning tunneling transport between a metallic tip and a Kondo lattice.We calculate the density of states(DOS)and the tunneling current and differential conductance(DC)under different conduction-fermion band hybridization and temperature in the Kondo lattice.It is found that the hybridization strength and temperature give asymmetric coherent peaks in the DOS separated by the Fermi energy.The corresponding current and DC intensity depend on the temperature and quantum interference effect among the c-electron and f-electron states in the Kondo lattice.
作者 羊富彬 吴华
机构地区 Department of Physics
出处 《Communications in Theoretical Physics》 SCIE CAS CSCD 2016年第5期629-634,共6页 理论物理通讯(英文版)
基金 Supported by the National Natural Science Foundation of China under Grant No.11547203 the Research Project of Education Department in Sichuan Province of China under Grant No.15ZB0457
关键词 扫描隧道 晶格 电子传输 量子干涉效应 隧穿电流 费米能级 微分电导 DOS Kondo lattice scanning tunneling transport quantum interference effect
  • 相关文献

参考文献29

  • 1G.R. Stewart, Rev. Mod. Phys. 78 (2006) 743.
  • 2H. Tsunetsugu, M. Sigrist, and K. Ueda, Rev. Mod. Phys 69 (1997) 809.
  • 3P. Gegenwart, Q. Si, and F. Steglich, Nature Phys. 4 (2008) 186.
  • 4Z. Fisk and H.R. Ott, Superconductivity in New Materi- als, Vol. 4, Elsevier, Amsterdam (2010).
  • 5J.A. Mydosh and P.M. Oppeneer, Rev. Mod. Phys. 83 (2011) 1301.
  • 6P. Coleman and A.J. Schofield, Nature (London) 433 (2005) 226.
  • 7C.L. Lin, A. Wallash, J.E. Crow, T. Mihalisin, and P. Sehlottmann, Phys. Rev. Lett. 58 (1987) 1232.
  • 8J.M. Lawrence, T. Graf, M.F. Hundley, D. Mandrus, J.D. Thompson, A. Lacerda, M.S. Torikaehvili, J.L. Sarrao, and Z. Fisk, Phys. Rev. B 53 (1996) 12559.
  • 9S. Ernst, S. Kirchner, C. Krellner, C. Geibel, G. Zwick-nagl, F. Steglich, and S. Wirth, Nature (London) 474 (2011) 362.
  • 10P. Aynajian, E.H. da Silva Nero, A. Gyenis, R.E. Baum- bach, J.D. Thompson, Z. Fisk, E.D. Bauer, and A. Yaz- dani, Nature (London) 486 (2012) 201.

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部