摘要
假定股票价格满足双分数布朗运动驱动的随机微分方程,期望收益率、无风险利率和波动率均为常数,根据双分数布朗运动随机分析理论,建立双分数布朗运动环境下金融市场数学模型,运用保险精算方法,得到了双分数布朗运动环境下重置期权定价公式.
Assume that the option price satisfies stochastic differential equation driven by bi- fractional Brownian motion. Also,the expected rate and risk- less rate and the volatility were constants. The financial market mathematical model was built by the stochastic analysis for bi- fractional Brownian motion. Using the actuarial approach,the pricing formula of reset option in bi- fractional Brownian motion environment was obtained.
出处
《哈尔滨商业大学学报(自然科学版)》
CAS
2016年第2期242-245,共4页
Journal of Harbin University of Commerce:Natural Sciences Edition
基金
陕西省教育厅专项科研基金项目(14JK1299)
西安工程大学研究生创新基金(CX201613)
关键词
双分数布朗运动
保险精算
重置期权
bi-fractional Brownian motion
actuarial mathematics
reset option