期刊文献+

基于云平台的飞行试验数据中心架构设计 被引量:1

Design of Architecture of Spaceflight Test Data Centers Using Cloud Platform
下载PDF
导出
摘要 近年高密度航天发射任务和不断提升的数据采集处理能力使得试验数据规模呈几何级数增长,但目前采用的传统试验数据存储管理和应用服务手段已难以适应任务发展的形势要求。针对航天任务参试系统多、地域跨度广、试验数据采集源多、规模增长迅速、业务应用复杂及用户多样等特征需求,采用云存储和云计算技术,提出了一种基于云平台的分布式数据中心架构,论述了基于两级数据中心的应用服务模式,实现了两级数据中心的整体设计,支持全系统计算资源、存储资源、网络资源和业务资源的统一调度管理,支持计算节点、存储节点和网络节点的动态扩展,能够较好地满足海量飞行试验数据的长期存储管理和高效应用服务需求。 In recent years,the scale of spaceflight test data is growing exponentially with the increasing density of space launch tasks and improving ability of data acquisition and processing.As a result,the existing traditional approaches of data storage,management and application services no longer meet the requirements and situations of missions.Space missions have many unique characteristics,such as multi-systems involvement,wide geographical distribution,mass amount of acquisition sources,rapid increase in scale,sophisticated applications and diversified users.Based on these characteristics,a distributed cloud platform architecture for spaceflight test data center is proposed by employing the technologies of cloud storage and cloud computing.Patterns of application and services based on two levels of data center are also discussed.The architecture implements an integral design of two levels of data center,provides a unified scheduling and management infrastructure for resources of computing,storage,network and applications,and it also enhances dynamic extensions for computing nodes,storage nodes and network nodes.It well meets the demands of long-term storage management and efficient application services for mass amount of spaceflight test data.
出处 《飞行器测控学报》 CSCD 2016年第2期137-145,共9页 Journal of Spacecraft TT&C Technology
关键词 飞行试验数据 数据中心 存储云 计算云 体系结构 spaceflight test data test data center(TDC) storage cloud computing cloud architecture
  • 相关文献

参考文献13

  • 1Laney D. 3D data management: controlling data volume, ve- locity, and variety [EB/OL] . (2001 02 06)[2015-09-03] . http: //blogs. gartner, eom/doug-laney/files/2012/Ol/ad94 9-3D-Data Management-Controlling-Data Volume-Velocity and-Variety, pdf.
  • 2金玲.大数据的特点、作用及处理技术[EB/OL].(201311-14)[2015-09-03].http://wwwnn36d.com/archives/4583.
  • 3SimonP.大数据应用商业案例实践[M].漆晨曦,张淑芳,译.北京:人民邮电出版社,2014:45-47.
  • 4徐立冰,腾云.云计算和大数据时代网络技术揭秘[M].北京:人民邮电出版社,2013.
  • 5雷葆华,饶少阳,江峰,等.云计算解码:技术架构和产业运营[M].北京:电子工业出版社,2012.
  • 6云存储技术手册.存储技术专题[EB/OL].(2014-10-02)[2015-09-03].http://download.techtarget.coin.cn/stor-age/guide/Cloud%20storage.pdf.
  • 7张东.云存储技术研究与应用[J].科研信息化技术与应用,2012,3(6):85-90. 被引量:7
  • 8罗军舟,金嘉晖,宋爱波,东方.云计算:体系架构与关键技术[J].通信学报,2011,32(7):3-21. 被引量:826
  • 9林珠,陈树敏,罗俊博.基于云计算的科技资源数据中心架构设计[J].中国科技资源导刊,2015,47(4):40-44. 被引量:5
  • 10李新安,宋海娜,贺忠堂,岳强,赵锋伟.基于云计算的综合应急管理平台体系架构研究[J].信息技术,2014,38(5):18-20. 被引量:8

二级参考文献93

共引文献895

同被引文献6

引证文献1

二级引证文献2

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部