期刊文献+

基于试飞数据的航空发动机加力瞬态过程模型辨识 被引量:1

Identification of Aero-engine Afterburner Transient Process Based on Flight Test Data
下载PDF
导出
摘要 为了对某航空发动机慢车至最大以及最大至慢车加力瞬态过程的工作状态进行监控,在该发动机实际飞行试验数据基础上,基于三层前向人工神经网络,辨识得到了该型发动机加力瞬态过程模型,对模型预测精度进行了分析讨论,利用额外的飞行试验数据对模型进行了检验。结果表明,辨识模型能够指示加力燃烧室工作状态,模型计算模拟参数与实际飞行试验数据吻合良好。该辨识模型可应用至该型发动机飞行试验的实时监控中,也可为其他型号发动机模型辨识提供参考。 For monitoring a type aero-engine's state during process of idle to maximum and maximum to idle, based on the actual flight test data, the afterburner transients model has been identified using three-layers forward artificial neural networks. The model precision was analyzed based model output error methods, and then the identified model was validated on out-of-sample flight test data. It shows that the state of afterburner indicator has been well predicted and the turbofan's state parameter agree well with actual flight test data during afterburner transients. The identified model could be applied in real-time monitoring during such type aero-engine's flight test, meanwhile could be a reference for other aero-engine's model identification.
出处 《航空科学技术》 2016年第5期27-32,共6页 Aeronautical Science & Technology
关键词 加力瞬态过程 模型辨识 人工神经网络 飞行试验 航空发动机 afterburner transients model identification artificial neural networks flight test aero engine
  • 相关文献

参考文献14

  • 1Gennady, Haydn. Dynamic modeling of gas turbines: identification, simulation, condition monitoring and optimal control[M].London: Springer-Verlag, 2004: 90-110.
  • 2Ruano, Fleming. Nonlinear identification of aircraft gas-turbine dynamics[J]. Neurocomputing, 2003, 55 (3) : 551-579.
  • 3Sina T, Sadough. Dynamic neural network-based fault diagnosis of gas turbine engines[J]. Neurocomputing, 2014, 125 : 153-165.
  • 4Joly, Ogaji. Gas-turbine diagnostics using artificial neural- networks for a high bypass ratio military turbofan engine[J]. Applied Energy, 2004, 78 (4): 397-418.
  • 5Jonas, Qinghua Z. Nonlinear black-box modeling in system identification: a unified overview[J]. Automatica, 1995, 31 (12) : 1691-1724.
  • 6Clifton. Condition monitoring of gas-turbine engines[D]. London: University of Oxford, 2005.
  • 7Dawn A, Nam N K, Joo H C. Statistical aspects in neural network for the purpose of prognostics[J]. AIAA-2014-0481.
  • 8Fast, Assadi. Development and multi-utility of an ANN model for an industrial gas turbine[J]. Applied Energy, 2009, 86 ( 1 ) : 9-17.
  • 9Fast. Artificial neural networks for gas turbine monitoring[D]. Sweden: Lund University, 2010.
  • 10Lazzaretto. Analytical and neural network models for gas turbine design and off-design simulation[J]. International Journal of Applied Thermodynamics, 2001, 4 (4): 173-182.

同被引文献7

引证文献1

二级引证文献3

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部