摘要
针对高职院校学生存在的心理健康问题现状,提出一种利用集成学习算法——Adaboost进行心理健康预测的方法。该方法首先抽取心理健康测试数据特征,经过数据清洗和规范化处理后,以决策树为分类器对数据进行挖掘分析,运用Adaboost算法对决策树分类器进行多轮迭代训练以提高分类器的分类效能,建立起一种心理健康预测模型。利用该模型对某高校2015级2 780名学生的心理健康测试数据进行了分析。实验结果表明,该方法能够实现对敏感心理问题的有效识别,从而为高职院校心理健康教育提供规划和决策依据。
出处
《软件导刊》
2016年第6期162-164,共3页
Software Guide
基金
安徽省高校自然科学研究重点项目(KJ2016A449)