期刊文献+

基于仿真的操舵系统故障风险分析方法

Fault risk analysis method of steering system based on simulation
下载PDF
导出
摘要 操舵系统的故障风险分析需求迫切,但传统基于经验的安全性分析技术在历史故障数据匮乏的情况下作用有限。为此,提出一种基于仿真的操舵系统故障风险分析方法。基于AMESim建立操舵系统的虚拟样机,并对其进行校核与验证以确保其可信性。进行典型故障模式的植入与仿真实验以获取故障仿真数据,并与Simulink进行运行场景的动力学联合仿真,根据仿真结果体现的安全风险对故障模式进行分类。以某型潜航器操舵系统为案例验证了所提出方法的有效性,该方法可为操舵系统及其他大型复杂机电液控制系统的故障风险分析提供参考。 Fault risk analysis of steering system is of great significance. However, the traditional safety analysis methods based on experience is limited in application because of the short of historic fault data. This paper proposed a fault risk analysis method based on simulation. The virtual prototyping of steering was built on AMESim, which was verified and validated afterwards. On this basis, fault injection and fault simulation was conducted on the prototyping to get the simulated fault data. Simulink was employed to conduct dynamics co-simulation of running scenario, thus fault modes could be classified based on the safety risk reflected by the simulation results. A case study of underwater vehicle steering system was studied to verify the proposed method. This method may provide an available choice for the fault risk analysis of steering system and other large-scale and complicated mechanic-electronic-hydraulic control systems.
出处 《舰船科学技术》 北大核心 2016年第5期91-95,共5页 Ship Science and Technology
基金 国家自然科学基金资助项目(51475463)
关键词 操舵系统 虚拟样机 故障风险 故障仿真 steering system virtual prototyping fault risk fault simulation
  • 相关文献

参考文献3

二级参考文献22

  • 1罗一新.我国机械安全的现状及其对策[J].中国安全科学学报,2004,14(5):92-94. 被引量:22
  • 2胡斌梁.关于机械设备的绿色与安全设计的思考[J].中国安全科学学报,2005,15(2):41-44. 被引量:9
  • 3曹先常,史进渊,蒋安众,张勇.基于模糊数学的电站设备故障风险定量研究[J].中国电机工程学报,2005,25(23):119-123. 被引量:15
  • 4胡良谋,曹克强,徐浩军.基于LS-SVM的电液位置伺服系统多故障诊断[J].系统仿真学报,2007,19(10):2252-2255. 被引量:15
  • 5Suykens J A K, Vandewalle J. Least squares support vector machine classifiers [J]. Neural Processing Letters (S1370-4621), 1999, 9(3): 293-300.
  • 6Suykens J A K, De Brabanter J, Lukas L, Vandewalle J. Weighted least squares support vector machines: robustness and sparse approximation [J]. Neurocomputing (S0925-2312), 2002, 48(1): 85-105.
  • 7Rousseeuw P J, Leroy A. Robust regression and outlier detection [M]. USA: John Wiley & Sons, INC, 1987.
  • 8David H A. Early sample measures of variability [J]. Statistical Science (S0883-4237), 1998, 13(4): 368-377.
  • 9Suykens J A K, De Brabanter J, Tony Van Gestel. Least Squares Support Vector Machines [M]. World Scientific (ISBN 981-238- 151-1), 2002.
  • 10Suykens J A K, Lukas L, Vandewalle J. Sparse approximation using least squarse support vector machines [C]// IEEE International Symposium on Circuits and Systems (ISCAS2000), Geneva, Switzerland, 2000. USA: IEEE, 2000, II: 757-760.

共引文献30

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部