期刊文献+

多晶石墨烯拉伸断裂行为的分子动力学模拟 被引量:4

Molecular dynamics study of the tensile mechanical properties of polycrystalline graphene
下载PDF
导出
摘要 采用分子动力学模拟方法研究了不同晶界对石墨烯拉伸力学特性及断裂行为的影响.定义了表征晶界能量特性的新参量缺陷能,并以此为基础分析了晶界结构的能量特性.探讨了晶界对弹性模量和强度极限等的影响以及强度对晶界能量特性的依赖关系.结果表明:晶界能量特性可以间接反映晶界强度;同时,晶界中缺陷会使实际承载碳键数量小于名义承载碳键数,从而在较大范围内影响弹性模量.分析了不同晶界的断裂过程,发现了裂纹扩展方向的强度依赖性:低强度晶界主要是以碳键直接断裂为主要方式的沿晶断裂,而高强度晶界通常是碳键直接断裂和Stone-Wales翻转过程交替进行下的穿晶断裂.研究结果可为石墨烯器件的设计制造提供理论指导. Grain boundaries(GBs) are known to have an important influence on material properties,so understanding how GBs in graphene change its physical properties is important both scientifically and technologically.In this paper,we perform a series of molecular dynamics simulations to investigate the energies,mechanical properties and fracture process of 29 graphene GBs(symmetric and nonsymmetric) under tensile strains.With different arrangements of the pentagonal and heptagonal rings,the misorientation angle(θ) ranges from 3.5?to 27.8?.The GBs defects in graphene can produce a pre-strain that will lead to an increase of the energy of GBs.We study the atomic energy distribution around GBs and define a new parameter: single defect energy(Esingle) to calculate the average energy per GBs defect.It is found that Esingleshows a clear linear relation between θ and defect density(ρ),because pre-strain filed can be cancelled out locally with the increase of defect density.And this pre-stain can reduce the strength of the C—C bond contained in GBs defects.Hence,with very few exceptions,mechanical failure always starts from the defective region.Furthermore,the energy of GBs can be used to reflect the strength of GBs indirectly.The simulated results show that the tensile strength of GBs is linearly related to the highest atomic energy(Emax),and it also depends on Esingle monotonically.Owing to the pre-strain,load distribution along GBs is uneven.Because some bonds are stretched while others are compressed,that is,the real number of bearing carbon bonds is less than the nominal number.Therefore,at the beginning of tension,the Young's modulus of polycrystalline graphene is significantly lower than that of the monocrystal one.But with the increase of strain,it becomes comparable to that of the monocrystal graphene at sufficiently large strain.The results of fracture process indicate that formation and propagation of crack are both dependent on strength GBs.For low GB strength,the fracture mechanism is transgranular fracture in the form of direct fracture of C—C bonds.When stress reaches a critical value,the weakest C—C bonds in GBs will breakdown and form a fracture site.Because of the uneven bearing condition,the C—C bonds in front of the crack possess considerable residual strength and could prevent crack from propagating.As a result,many other fracture sites in the GBs defects can be produced with the increase of strain,and finally,these sites emerge gradually along GBs and form a sawtooth crack.In contrast,the fracture process of high strength GBs is always accompanied with the variations of Stone-Wales transformation and direct fracture of C—C bonds.Once the fracture site forms,the crack will propagate rapidly predominantly along armchair or zigzag direction and finally could cross GBs,this process can be called intergranular fracture.Our present work provides fundamental guidance for understanding how defects affect the mechanical behaviour,which is important for further research and application of graphene devices.
出处 《物理学报》 SCIE EI CAS CSCD 北大核心 2016年第11期166-175,共10页 Acta Physica Sinica
基金 国家自然科学基金(批准号:51535003 51575138)资助的课题~~
关键词 多晶石墨烯 拉伸 断裂 力学特性 polycrystalline graphene tensile fracture mechanical properties
  • 相关文献

参考文献40

  • 1Ramanathan T, Abdala A A, Stankovich S, Dikin D A, Herrera-Alonso M, Piner R D, Adamson D H, Schniepp H C, Chen X, Ruoff R S, Nguyen S T, Aksay I A, Prud'homme R K, Brinson L C 2008 Nat. Nanotechnol. 3 327.
  • 2Miao T, Yeom S, Wang P, Standley B, Bockrath M 2014 Nano Lett. 14 2982.
  • 3Zhao J, Zhang G Y, Shi D X 2013 Chin. Phys. B 22 57701.
  • 4Li X, Cai W, An J, Kim S, Nah J, Yang D, Piner R, Velamakanni A, Jung I, Tutuc E, Banerjee S K, Colombo L, Ruoff R S 2009 Science 324 1312.
  • 5Yang H, Shen C M, Tian Y, Wang G Q, Lin S X, Zhang Y, Gu C Z, Li J J, Gao H J 2014 Chin. Phys. B 23 096803.
  • 6Zhang T, Li X, Gao H 2015 Int. J. Fract. 196 1.
  • 7Yazyev O V, Louie S G 2010 Phys. Rev. B 81 195420.
  • 8Huang P Y, Ruiz-Vargas C S, van der Zande A M, Whitney W S, Levendorf M P, Kevek J W, Garg S, Alden J S, Hustedt C J, Zhu Y, Park J, McEuen P L, Muller D A 2011 Nature 469 389.
  • 9An J, Voelkl E, Suk J W, Li X, Magnuson C W, Fu L, Tiemeijer P, Bischoff M, Freitag B, Popova E, Ruoff R S 2011 ACS Nano 5 2433.
  • 10Wang M C, Yan C, Ma L, Hu N, Chen M W 2012 Comput. Mater. Sci. 54 236.

同被引文献12

引证文献4

二级引证文献8

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部