期刊文献+

分数阶初值问题解的存在性与唯一性(英文)

Existence and uniqueness of the solutions for the fractional initial value problem
下载PDF
导出
摘要 讨论了带有Riemann-Liouville微分算子的分数阶微分方程初值问题,利用混合单调算子理论,获得了初值问题解的存在唯一性定理,并举例说明主要结果. In this paper, we discuss the initial value problem of fractional differential equations involving Riemann-Liouville differential operators. By means of the mixed monotone operator theory, we obtain the existence and uniqueness of the solutions to the initial value problem, and an example is given to illustrate the main result.
出处 《上海师范大学学报(自然科学版)》 2016年第3期313-319,共7页 Journal of Shanghai Normal University(Natural Sciences)
基金 supported by National Natural Science Foundation of China(11271235) Shanxi Datong University(2009-Y-15,2010-B-01) the Development Foundation of Higher Education Department of Shanxi Province(20111020)
关键词 分数阶初值问题 混合单调算子 上解与下解 拟解 fractional initial value problem mixed monotone operator lower and upper solutions quasi-solution
  • 相关文献

参考文献1

二级参考文献15

  • 1O.P. Agrawal, D. Baleanu, A Hamiltonian formulation and a direct numerical scheme for fractional optimal control problems, J. Vib. Control., 13:9-1O(2007),1269-128l.
  • 2D. Baleanu, New applications offractional variational principles, Rep. Math. Phys., 61:2(2008), 199-206.
  • 3K.S. Miller, B. Ross, An Introduction to the Fractional Calculus and Fractional Differential Equations, Wiley, New York, 1993.
  • 4M.D. Ortigueira, Fractional central differences and derivatives, J. Vib. Control., 14:9- 10(2008) ,1255-1266.
  • 5M.F. Silva, J.A. Tenreiro Machado, R.S. Barbosa, Using fractional derivatives in joint control of hexapodrobots, J. Vib. Control., 14:9-10(2008),1473-1485.
  • 6D. Baleanu, O. Defterli, O.P. Agrawal, A central difference numerical scheme for fractional optimal control problems, J. Vib. Control., 15:4(2009),583-597.
  • 7E.M. Rabei, K.1. Nawafieh, R.S. Hijjawi, S.1. Muslih, D. Baleanu, The Hamilton formalism with fractional derivatives, J. Math. Anal. Appl., 327:2(2007),891-897.
  • 8E.M. Rabei, D.M. Tarawneh, S.1. Muslih, D. Baleanu, Heisenbergs equations of motion with fractional derivatives, J. Vib. Control., 13:9-10(2007),1239-1247.
  • 9F.M. Atici, P.W. Eloe, Two-point boundary value problems for finite fractional difference equations, J. Difference Equ. Appl., 17(2011),445-456.
  • 10Zh. Huang and C. Hou, Solvability of Nonlocal Fractional Boundary Value Problems, Discrete Dynamics in Nature and Society Volume 2013, Article ID 943961, 9 pages.

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部