期刊文献+

锯齿形单壁碳纳米管的穿透能研究

Study on the Penetrating Energy of Zigzag Single-walled Carbon Nanotubes
下载PDF
导出
摘要 基于分子动力学方法,研究了载能碳离子碰撞锯齿形单壁碳纳米管过程中初级碰撞原子(PKA)的运动过程和能量变化过程.分析了手性指数为(2n+1,0)(n=2-9)的单壁碳纳米管中PKA的穿透能与载能碳离子入射能间的关系.结果表明,穿透能与入射能之间呈线性增长关系,线性变化的斜率与碳纳米管直径有关.通过分析PKA势能随模拟时间的变化规律,阐述了初级碰撞原子的穿透能随入射能的增加而增加的物理机制. The movement process and energy change of the primary knock-on atom were investigated after an energetic carbon ion colliding with single-walled carbon nanotubes via a molecular dynamics method. The relationship between the penetrating energy of the primary knock-on atom and the incident energy of the projectile carbon ion was analyzed for( 2n+1,0)( n = 2—9) zigzag single-walled carbon nanotubes. It was found that the penetrating energy increases linearly with the incident energy in the energy range under discussion. The linear slop was related to the nanotube diameter. The physical mechanism of linear increase was explained in detail by analyzing the time evolution of the potential energy of primary knock-on atom.
出处 《高等学校化学学报》 SCIE EI CAS CSCD 北大核心 2016年第6期1108-1114,共7页 Chemical Journal of Chinese Universities
基金 国家自然科学基金(批准号:11505003,21201006) 安徽省自然科学基金(批准号:1608085QA20) 安徽理工大学科研启动基金(批准号:ZX944)资助~~
关键词 碳纳米管 分子动力学 能量转移 穿透能 碰撞 Carbon nanotube Molecular dynamics Energy transfer Penetrating energy Collision
  • 相关文献

参考文献35

  • 1Iijima S. , Nature, 1991, 354, 56-58.
  • 2Perebeinos V. , Tersoff J. , Phys. Rev. Lett. , 2015, 114, 085501.
  • 3Niu L. L. , Huang D. , Du J. J. , Wei Y. , Hu C. F. , Ye J. Y. , Chen W. Y. , Chem. J. Chinese Universities, 2015,36(10) , 1873- 1879.
  • 4牛璐璐,黄棣,杜晶晶,魏延,胡超凡,叶家业,陈维毅.碳纳米管/壳聚糖复合微球的原位仿生矿化及表征[J].高等学校化学学报,2015,36(10):1873-1879. 被引量:2
  • 5Yang M. X. , Ma J. , Sun Y. R. , Xiong X. Z. , Li C. L. , Li Q. , Chen J. H. , Chem. J. Chinese Universities, 2015, 35(3) , 570- 575.
  • 6杨明轩,马杰,孙怡然,熊新竹,李晨璐,李强,陈君红.高等学校化学学报,2015,35(3),570-575.
  • 7Ma X. D. , Roslyak O. , Duque J. G. , Pang X. Y. , Doom S. K. , Piryatinski A. , Dunlap D. H. , Htoon H. , Phys. Rev. Lett. , 2015, 115, 017401.
  • 8Ozden S. , Autreto P. A. S. , Tiwary C. S. , Khatiwada S. , Machado L. , Galvao D. S. , Vajtai R. V. , Bah'era E. V. , Ajayan P. M. , Nano Lett. , 2014, 14(7), 4131--4137.
  • 9Aitkaliyeva A. , Shao L. , Carbon, 2012, 50, 4680-4684.
  • 10Arenal R. , Lopez-Bezanilla A. , ACS Nano, 2014, 8(8), 8419-8425.

二级参考文献24

  • 1Tian H. Y., Tang Z. H., Zhuang X. L., Chen X. S., Jing X. B., Prog. Polym. Sci., 2012, 37(2), 237-280.
  • 2Xie J., Li X., Jiang C. J., Lee R. J., Zhou Y. L., Teng L. S., Chem. Res. Chinese Universities, 2013, 29(5), 1003-1005.
  • 3Ruckh T. T., Kumar K., Kipper M. J., Popat K. C., Acta Biomater., 2010, 6(8), 2949-2959.
  • 4Anderson J. M., Shive M. S., Adv. Drug Del. Rev., 2012, 64, 72-82.
  • 5Zhou Z. H., Zhou J. N., Liu L. H., Yi Q. F., Liu Q. Q., Zeng W. N., Yang Z. M., J. Macromol. Sci. B, 2012, 51(4), 777-785.
  • 6Qian Z., Zhang Z. C., Li H. M., Liu H. R., Hu Z. Q., J. Polym. Sci. Pol. Chem., 2008, 46(1), 228-237.
  • 7Kong M., Chen X. G., Liu C. S., Liu C. G., Meng X. H., Yu L. J., Colloid Surface B Biointerfaces, 2008, 65(2), 197-202.
  • 8Huang D., Zuo Y., Zou Q., Wang Y. Y., Gao S. B., Wang X. Y., Liu H. H., Li Y. B., J. Biomed. Mater. Res. B Appl. Biomater., 2012, 100(1), 51-57.
  • 9Yang C. C., Lin C. C., Liao J. W., Yen S. K., Mater. Sci. Eng. C, 2013, 33(4), 2203-2212.
  • 10Eder D., Chem. Rev., 2010, 110(3), 1348-1385.

共引文献2

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部