期刊文献+

D维空间Cs_2分子X^1Σ_g^+态精确解析解

Exact analytical solution to X^1Σ_g^+ state of Cs_2 molecule in D spatial dimensions
下载PDF
导出
摘要 使用完全量子化规则法计算了D维空间中具有任意转动量子数Morse势的Schrdinger方程,得到了Cs_2分子X^1Σ_g^+态旋转-振动能谱,讨论了能谱与维度D和振动量子数之间的关系.结果表明:(1)具有不同转动量子数和振动量子数的能谱随维度D的增大而趋于相同;(2)高维Cs_2分子X^1Σ_g^+态的振动能特性与三维相似. The Schrodinger equation including Morse potential with arbitrary rotational quantum number in D spatial dimensions was investigated using the proper quantization rule approach. The rotation -vibrational energies for X^1Σg^+state of Cs2 molecule were obtained. We discussed the relations of the energy spectra with spatial dimension D and vibrational quantum number. The results show that, (1) the rotation -vibrational energies for X^1Σg^+ state of Cs2 molecule converge as D increases in the presence of a fixed vibrational quantum number and various rotational quantum numbers, and (2) the behavior of the vibrational energies in higher dimensions remains similar to that of the three - dimensional system.
作者 安博
出处 《原子与分子物理学报》 CAS CSCD 北大核心 2016年第3期404-408,共5页 Journal of Atomic and Molecular Physics
基金 渭南师范学院省级科研机构重大科研项目(2015ZD002) 渭南师范学院教改项目(JG201550) 渭南师范学院特色学科建设项目(14TSXK06)
关键词 SCHRODINGER方程 MORSE势 旋转-振动能 任意维空间 Schrodinger equation Morse potential Rotation -vibrational energy Arbitrary spatial dimensions
  • 相关文献

参考文献1

二级参考文献16

  • 1Witten E 1981 Nucl.Phys.B 188 513.
  • 2Cooper F,Khare A,Sukhatme U 1995 Phys.Rep.251 267.
  • 3de Lange O L,Raab R E 1991 Operator Methods in Quantum Mechanics (Oxford:Clarendon Press).
  • 4Gendenshtein L 1983 JETP Lett.38 356.
  • 5Dutt R,Khare A,Sukhatme U 1986 Phys.Lett.B 181 295.
  • 6Dabrowska J,Khare A,Sukhatme U 1988 J.Phys.A 21 L195.
  • 7Cooper F,Ginocchio J N,Wopf A 1988 Phys.Lett.A 129 145.
  • 8Khare A,Sukhatme U 1988 J.Phys.A 21 L501.
  • 9Schiff L I 1968 Quantum Mechanics (3rd ed) (New York:McGraw-Hill).
  • 10Wentzel G 1926 Z.Physik 38 518.

共引文献10

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部