期刊文献+

基于模糊等价类的频繁项集精简表示方法 被引量:3

Concise representation of frequent itemset based on fuzzy equivalence
下载PDF
导出
摘要 频繁项集挖掘是数据挖掘应用中的关键问题,而巨大的频繁项集数目成为了现实应用中的阻碍。为了降低频繁项集数量,使其更加利于应用,提出了一种基于格结构的频繁项集精简模型,并证明了该方法产生支持度误差的范围;此外,在模型的基础上提出了一种模糊等价类精简表示算法FEC。实验结果表明,该方法能够保证在频繁项集数量大幅降低的同时,不会引入过大的支持度错误,与Index-Meta算法相比,产生的支持度错误较小。因此,基于模糊等价类的频繁项集精简表示模型及FEC算法有较高的应用价值。 Frequent itemset mining is a main problem in the application of data mining. But the large number of the frequent itemset makes it hard to apply. To reduce the number of frequent itemsets, this paper proposed a concise representation model of frequent itemset based on concept lattices. It proved the feasibility of the model and deduced the range of support error. In addition, this paper proposed a algorithm of fuzzy eqivalence based on the model which was called FEC. Experimental results show that this algorithm can reduce the number of frequent itemset sharply and the support error is also very low. The support error is much smaller than that of Index-Meta. So this method has great application value.
出处 《计算机应用研究》 CSCD 北大核心 2016年第7期1936-1940,共5页 Application Research of Computers
基金 国家"863"计划资助项目(2012AA011005) 国家自然科学基金资助项目(61273292)
关键词 数据挖掘 模糊等价类 类闭合集 频繁项集 精简表示 关联规则 data mining fuzzy equivalence class approximate close set frequent itemset concise representation association rules
  • 相关文献

参考文献14

  • 1HanJiawei MichelineKamber.数据挖掘概念与技术[M].北京:机械工业出版社,2004..
  • 2Calders T,Rigotti C,Boulicaut J F.A survey on condensed representations for frequent sets[C] //Constraint-Based Mining and Inductive Databases.Berlin:Springer,2005:64-80.
  • 3Lucchese C,Orlando S,Perego R.Fast and memory efficient mining of frequent closed itemsets[J].IEEE Trans on Knowledge and Data Engineering,2006,18(1):21-36.
  • 4Pasquier N,Bastide Y,Taouil R,et al.Discovering frequent closed itemsets for association rules[C] //Proc of the 7th International Conference on Database Theory.Berlin:Springer,1999:398-416.
  • 5宋威,李晋宏,徐章艳,杨炳儒.一种新的频繁项集精简表示方法及其挖掘算法的研究[J].计算机研究与发展,2010,47(2):277-285. 被引量:18
  • 6Boulicaut J F,Bykowski A,Rigotti C.Free-sets:a condensed representation of boolean data for the approximation of frequency queries[J].Data Mining and Knowledge Discovery,2003,7(1):5-22.
  • 7Cheng J,Ke Yiping,Ng W.δ-tolerance closed frequent itemsets[C] //Proc of the 6th IEEE International Conference on Data Mining.2006:139-148.
  • 8Jr Bayardo R J.Efficiently mining long patterns from databases[J].ACM SIGMOD Record,1998,27(2):85-93.
  • 9Burdick D,Calimlim M,Flannick J,et al.MAFIA:a maximal frequent itemset algorithm for transactional databases[J].IEEE Trans on Knowledge and Data Engineering,2005,17(11):1490-1504.
  • 10胡可云,陆玉昌,石纯一.基于概念格的分类和关联规则的集成挖掘方法[J].软件学报,2000,11(11):1478-1484. 被引量:64

二级参考文献40

  • 1秦亮曦,史忠植.SFPMax——基于排序FP树的最大频繁模式挖掘算法[J].计算机研究与发展,2005,42(2):217-223. 被引量:26
  • 2Ceglar A, Roddick J F. Association mining [J]. ACM Computing Surveys, 2006, 38 (2): 1-42.
  • 3Piatetsky-Shapiro G. Data mining and knowledge discovery 1996 to 2005: Overcoming the hype and moving from "university" to "business" and "analytics"[J]. Data Mining Knowledge Discovery, 2007, 15(1): 99-105.
  • 4Han J, Cheng H, Xin D, et al. Frequent pattern mining: Current status and future directions[J]. Data Mining and Knowledge Discovery, 2007, 15(1): 55-86.
  • 5Calders T, Rigotti C, Boulicaut J F. A survey on condensed representations for frequent sets [G] //Constraint-Based Mining and Inductive Databases. Berlin: Springer, 2005:64- 80.
  • 6Song W, Yang B R, Xu Z Y. Index-MaxMiner: A new maximal frequent itemset mining algorithm [J]. International Journal on Artificial Intelligence Tools, 2008, 17(2): 303- 320.
  • 7Lucchese C, Orlando S, Perego R. Fast and memory efficient mining of frequent closed itemsets [J]. IEEE Trans on Knowledge and Data Engineering, 2006, 18 (1): 21-36.
  • 8Liu G, Lu H, Lou W, et al. Efficient mining of frequent patterns using ascending frequency ordered prefix-tree [J]. Data Mining and Knowledge Discovery, 2004, 9 (3) : 249- 274.
  • 9Grahne G, Zhu J. Fast algorithms for frequent itemset mining using prefix-trees[J]. IEEE Trans on Knowledge and Data Engineering, 2005, 17(10): 1:347-1362.
  • 10Liu B,Proceedings of the KDD-98,1998年,80页

共引文献106

同被引文献19

引证文献3

二级引证文献11

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部