期刊文献+

基于修正相关系数的运动目标检测 被引量:1

Moving target detection algorithm based on modified correlation coefficient
下载PDF
导出
摘要 通过计算相邻两帧之间对应行和列的相关系数,利用运动目标区域相关系数相对较小的特点,分割出运动目标区域,进而利用逐点匹配算法准确地检测出运动目标。考虑到计算相关系数的运算量大,为了提高检测效率,对相关系数进行了修正。该算法可以使用于复杂背景下多运动目标的检测,具有对噪声不敏感等特点。实验表明,该算法可以有效地检测出所有运动目标,稳定性好,适合于对运动目标的实时检测。 By computing the correlation coefficient of corresponding rows and ranks between two adjacent frames, it segmented the moving object region by using the trait of target area which correlation coefficient was relative small, then tested moving target accurately through point by point matching algorithm. Because of the number of the operations for the correlation coefficient was tremendous, this paper modified the correlation coefficient to improve the efficiency of the detection. This arithmetic had the character of little calculating amount and not sensitive to the noise, it could be used to the multiple moving target detection under complication back-ground. Experiments show that the algorithm can detect all the moving target accurately, and it is reliable, so it fit for real time detection of moving targets.
机构地区 长安大学理学院
出处 《计算机应用研究》 CSCD 北大核心 2016年第7期2197-2200,共4页 Application Research of Computers
基金 国家自然科学基金资助项目(11171043 11201038) 中央高校基本科研业务费专项资金资助项目(CHD2012TD015)
关键词 运动目标检测 修正相关系数 图像配准 moving target detection modified correlation coefficient image registration
  • 相关文献

参考文献13

二级参考文献74

  • 1魏访.灰度相关系数法性能的研究[J].中南民族大学学报(自然科学版),2001,20(z1):18-19. 被引量:2
  • 2杨小冈,曹菲,缪栋,张云鹏.基于相似度比较的图像灰度匹配算法研究[J].系统工程与电子技术,2005,27(5):918-921. 被引量:31
  • 3代科学,李国辉,涂丹,袁见.监控视频运动目标检测减背景技术的研究现状和展望[J].中国图象图形学报,2006,11(7):919-927. 被引量:169
  • 4安晓东.基于Fourier-Mellin变换的宽视场监控图像合成技术[J].中北大学学报(自然科学版),2007,28(2):181-183. 被引量:5
  • 5Stauffer C, Grmson W E L.Adaptive background mixture mod- els for real-time tracking[C]//Proceeding of IEEE International Conference on Computer Vision and Pattern Recognition,Fort Co- lins, Colorado,USA.[S.l.] : IEEE Computer Society, 1999,2: 246-252,.
  • 6Pavlidis I, Morellas V, Tsiamyrtzis P, et al.Urban surveillance system: From the laboratory to the commercial world[J].Pro- ceedmgs of the IEEE,2001,89(10) : 1478-1497.
  • 7Power P W, Schoonees J A.Understanding background mixture models for foregrounds segmentation[C]//Proceedings of lmage and Vision Computing, New Zealand, Auckland, 2002: 267-271.
  • 8Zhang Yunchu, Liang Zize, Hou Zengguang, et aLAn adaptive mixture gaussian background model with online background re- construction and adjustable foreground .mergence time for mo- tion segmentation[C]//IEEE International Conference on Industri- al Technology,ICIT 2005,14-17 Dec 2005:23-27.
  • 9Duda R O,Hart P E,Stork D G.Pattcm classification[M].2nd cd. New York:John Wiley & Sons,lnc,2001:521-528.
  • 10STAUFFER C, GRIMSON W.Adaptive background mixture models for real-time tracking[C] // Proceedings of IEEE Conference on Vision and Pattern Collins. New York:IEEE, 1999:246-252.

共引文献197

同被引文献3

引证文献1

二级引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部