期刊文献+

基于高阶马尔可夫随机场的图像去噪声研究

Research of image denoising based on high-order Markov random fields
下载PDF
导出
摘要 在图像去噪声处理中,高阶马尔可夫随机场通过最小化能量函数达到最优的去噪声结果。为了提高能量函数的优化性能,在马尔可夫随机场子模型的基础上对原始问题和对偶问题进行了分析,提出了一种基于原始-对偶方法的子模块之和方法。描述了马尔可夫随机场的线性规划及其对偶问题,并介绍了子模块之和流方法。通过对子模块之和流方法的原始问题和对偶问题进行分析,提出了同时满足派系松弛和一元松弛条件的近似解计算方法。实验表明,提出的方法与四种典型的图像去噪声方法相比具有更好的效果和更短的运行时间。 In image denoising, higher-order Markov random fields achieve the best result of image denoising by minimizing its energy function. In order to optimize the performance of energy function, this paper analyzed the primal and dual problem of Markov random fields based on submodularity, and proposed a primal-dual based sum-of-submodular flow approach. Firstly, it described the linear programming and its dual problem of Markov random fields, and introduced the sum-of-submodular flow method. Next, according to analyzing the primal and dual problem of the sum-of-submodular flow method, it proposed an approximating method satisfying both unary and clique slackness conditions. The experiments show that, the proposed approach is more efficient and has less executing time than four classical methods in image denoising.
作者 温喆
出处 《计算机应用研究》 CSCD 北大核心 2016年第7期2228-2230,2235,共4页 Application Research of Computers
基金 河北省科技厅基金项目(11227175) 石家庄市科技局项目(137130056A)
关键词 图像处理 高阶马尔可夫随机场 图像去噪声 原始—对偶算法 image processing high-order Markov random fields image denoising primal-dual algorithm
  • 相关文献

参考文献15

  • 1关新平,赵立兴,唐英干.图像去噪混合滤波方法[J].中国图象图形学报(A辑),2005,10(3):332-337. 被引量:110
  • 2侯春萍,俞斯乐.一种平面图像立体化的新方法[J].电子学报,2002,30(12):1861-1864. 被引量:10
  • 3李旭超,朱善安.图像分割中的马尔可夫随机场方法综述[J].中国图象图形学报,2007,12(5):789-798. 被引量:64
  • 4曹容菲,张美霞,王醒策,武仲科,周明全,田沄,刘新宇.基于高斯-马尔科夫随机场模型的脑血管分割算法研究[J].电子与信息学报,2014,36(9):2053-2060. 被引量:7
  • 5Szeliski R,Zabih R,Scharstein D,et al.A comparative study of energy minimization methods for Markov random fields with smoothness-based priors[J].IEEE Trans on Pattern Analysis and Machine Intelligence,2008,30(6):1068-1080.
  • 6Boykov Y,Veksler O,Zabih R.Fast approximate energy minimization via graph cuts[J].IEEE Trans on Pattern Analysis and Machine Intelligence,2001,23(11):1222-1239.
  • 7Lempitsky V,Rother C,Roth S,et al.Fusion moves for Markov random field optimization[J].IEEE Trans on Pattern Analysis and Machine Intelligence,2010,32(8):1392-1405.
  • 8Vernaza P,Taskar B,Lee D D.Online,self-supervised terrain classification via discriminatively trained submodular Markov random fields[C]//Proc of IEEE International Conference on Robotics and Automation.[S.l.]:IEEE Press,2008:2750-2757.
  • 9Kolmogorov V,Zabin R.What energy functions can be minimized via graph cuts?[J].IEEE Trans on Pattern Analysis and Machine Intelligence,2004,26(2):147-159.
  • 10Komodakis N,Tziritas G.A new framework for approximate labeling via graph cuts[C]//Proc of IEEE International Conference on Computer Vision.[S.l.]:IEEE Computer Society,2005:1018-1025.

二级参考文献75

  • 1侯春萍.平面图像视觉立体化技术的研究[M].天津:天津大学研究生院,1998..
  • 2Pitas I, Venetsanopoulos A N. Nonlinear digital filters: Principles and applications[M]. Kluwer Academic Publishers, January 1990.(ISBN-0-7923-9049-0 ), also reprinted in Taiwan of China, 1993:416.
  • 3Lee Y H. Generalized median filtering and related nonlinear filtering technique[J]. IEEE Transactions on Acoustics, Speech, and Signal Processing, 1985, 33 (3) :672 ~ 683.
  • 4Kaoru Arakawa. Median filter based on fuzzy rules and its application to image restoration[J]. Fuzzy Sets and Systems, 1996,77:3 ~ 13.
  • 5Zhou W T,Song C Z.Image segmentation by data-driven markov chain monte carlo[J].IEEE Transactions on Pattern Analysis and Machine Intelligence,2002,24(5):657 ~673.
  • 6Bouman C A,Shapiro M.A multiscale random field model for Bayesian image segmentation[J].IEEE Transactions on Image Processing,1994,3(2):162 ~177.
  • 7Kam A H,Fitzgerald W J.General unsupervised multiscale segmentation of images[A].In:Proceedings of Conference Record of the Thirty-third Asilomar on Signals,Systems,and Computers[C],Pacific Grove,CA,USA,1999,1:63~67.
  • 8Laferte J M,Perez P,Heitz F.Discrete Markov image modeling and inference on the quadtree[J].IEEE Transactions on Image Processing,2000,9(3):390 ~404.
  • 9Choi H,Baraniuk R G.Multiscale image segmentation using waveletdomain hidden markov models[J].IEEE Transactions on Image Processing,2001,10(9):1309 ~ 1321.
  • 10Sun J,Gu D,Zhang S,et al.Hidden markov bayesian texture segmentation using complex wavelet transform[J].IEE Proceedings Vision,Image and Signal Processing,2004,151(3):215 ~223.

共引文献187

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部