期刊文献+

基于并联装配模型的飞机壁板件装配偏差分析 被引量:1

Assembly Variation Analysis of Aeronautical Panels Based on the Model of Assembly in Parallel
下载PDF
导出
摘要 飞机是一种对气动外形准确度要求很高的机械产品,壁板件作为飞机机身的主要部件,其装配质量将会影响飞机的装配质量及性能。目前,对壁板件的装配偏差分析主要还是按照传统的柔性件装配偏差模型进行,而没有针对壁板件的装配工艺特点进行建模分析,这势必会造成分析偏离实际装配情况,导致结果精度不高。本文针对壁板件装配工艺特点提出一种并联装配模型,在小变形、线弹性假设下对其进行装配偏差分析,建立并联装配偏差模型,在此基础上,按照壁板件装配顺序建立壁板件装配偏差模型,为壁板件装配偏差分析及预测提供理论和技术手段。并以具体案例模型分别对所提出的并联装配偏差模型及壁板件装配偏差模型进行了求解及仿真装配验证。 The aircraft is a kind of mechanical products with high accuracy for aerodynamic shape. As the main components of the fuselage of aircraft, the panel assembly quality influences the quality and performance of aircraft assembly. At present, the assembly variation analysis of panel part mainly uses the traditional assembly variation model of the flexible parts, without taking the characteristics of the assembly process of panel part into account. This is bound to cause analysis to deviate from the actual assembly, and lead to low accuracy of results. In this paper, an assembly model in parallel is proposed for the assembly process of panel part. At first, under the assumption of small deformation and linear elasticity, the assembly variation is analyzed, and the assembly variation model in parallel is established. Then the assembly variation of aeronautical panel is modeled according to the assembly sequence of panel part, which provides theoretical and technical means for the analysis and prediction of the assembly variation of panel part. Finally, the specific cases are used to solve and verify the assembly variation analysis model in parallel and the assembly variation model of panel part separately.
出处 《航空制造技术》 2016年第11期88-94,102,共8页 Aeronautical Manufacturing Technology
基金 国家自然科学基金项目(51275236)
关键词 飞机壁板件 柔性件 装配偏差分析 并联装配模型 Aircraft panel Flexible part Assembly variation analysis Model of assembly in parallel
  • 相关文献

参考文献11

  • 1LIU S C, HU S J. Variation simulation for deformable sheet metal assemblies using finite element methods[J]. Journal of manufacturing science and engineering, 1997, 119(3):368-374.
  • 2MERKLEY K G. Tolerance analysis of compliant assemblies[D]. Provo: Brigham Young University, 1998.
  • 3BIHLMAIER B F. Tolerance analysis of flexible assemblies using finite element and spectral analysis[D]. Provo: Brigham Young University, 1999.
  • 4MORTENSEN A J. An integrated methodology for statistical tolerance analysis of flexible assemblies[D]. Provo: Brigham Young University, 2002.
  • 5CAI W, HU S J, YUAN J X. Deformable sheet metal fixturing: principles, algorithms, and simulations[J]. Journal of Manufacturing Science and Engineering, 1996, 118(3):318-324.
  • 6邢彦锋,赵晓昱,吴伟蔚.基于夹具配置的薄板件装配偏差分析模型[J].计算机集成制造系统,2010,16(2):280-286. 被引量:9
  • 7SAADAT M, SIM R, NAJAFI F. Prediction of geometrical variations in airbus wingboxassembly[J]. Assembly Automation, 2007, 27(4):324-332.
  • 8LIN J, JIN S, ZHENG C, et al. Compliant assembly variation analysis of aeronautical panels using unified substructures with consideration of identical parts[J]. Computer-Aided Design, 2014, 57:29--40.
  • 9靳思源,沈利冰,金隼,陈伟,郑丞.飞机壁板件装配偏差的刚柔混合建模方法与应用[J].机械设计与研究,2013,29(3):58-61. 被引量:8
  • 10CHENG H, LI Y, ZHANG K, et al. Efficient method of positioning error analysis for aeronautical thin-walled structures multi- state riveting[J]. The International Journal of Advanced Manufacturing Technology, 2011, 55(1-4):217-233.

二级参考文献30

  • 1HSIEH C C, OH K P. Simulation and optimization of assembly processes involving flexible parts[J]. International Journal of Vehicle Design,1997,18(5):455-465.
  • 2HSIEH C C, OH K P. A framework for modeling variation in vehicle assembly processes[J]. International Journal of Vehicle Design, 1997,18(5) : 466-473.
  • 3XIE L S, HSIEH C C. Clamping and welding sequence optimization for minimizing cycle time and assembly deformation[J]. International Journal of Materials and Product Technology, 2002,17(5/6) :389-399.
  • 4MERKLEY K G. Tolerance analysis of compliant assemblies [D]. Provo,Utah,USA:Bringham Young University,1998.
  • 5BIHLMAIER B F. Tolerance analysis of flexible assemblies using finite element and spectral analysis[D]. Provo, Utah, USA: Bringham Young University, 1999.
  • 6HU S J, WEBBINK R, LEE J, et al. Robustness evaluation for compliant assembly systems[J]. Journal of Mechanical Design, 2003,125(2):262-267.
  • 7CEGLAREK D, SHI J. Dimensional variation reduction for automotive body assembly[J]. Manufacturing Review, 1995, 8(2) :139-154.
  • 8CEGLAREK D, SHI J. Fixture failure diagnosis for the autobody assembly using pattern recognition[J]. Journal of Engineering for Industry, 1996,118 (1) : 55-66.
  • 9CAMELIO J A, HU S J, CEGLAREK D. Impact of fixture design on sheet metal assembly variation[J]. Journal of Manufacturing Systems, 2004,23 (3) : 182-193.
  • 10CAI W, HU S J, YUAN J X. Deformable sheet metal fixturing:principles, algorithms, and simulations[J]. Journal of Manufacturing Science and Engineering, 1996, 118 ( 3 ) : 318-324.

共引文献15

同被引文献5

引证文献1

二级引证文献12

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部