期刊文献+

FHE-相容的分布式人脸识别方案设计与分析 被引量:2

Design and analysis of FHE-compatible distributed face recognition scheme
下载PDF
导出
摘要 密码协议与人脸识别的结合需解决两者的相容性、因协议约束导致的低识别率和低效率问题。融合C/S和管道-过滤器结构提出分布式人脸识别系统(DFRS)体系结构,引入并改进整数环上的全同态加密(FHE),以此为基础设计远程管道协议,提出FHE-相容的DFRS方案(FHE*DFRS)。采用与FHE相容的欧式距离分类,采用Gabor小波和主成分分析进行特征提取,提高识别率,将欧式距离计算转化为点积计算,降低轮次复杂度。实验验证与分析结果表明,该方案能够保护隐私,具有较高的识别率和效率。 Combining cryptographic protocol with face recognition leads to some problems such as the compatibility of the two classes of algorithms,low recognition rate and low efficiency caused by protocol constraints.The distributed face recognition system architecture was proposed by combining C/S distributed model with pipe-filter architecture,fully homomorphic encryption algorithm over integer domain was introduced and improved to design remote pipe protocol and FHE-compatible distributed face recognition scheme(FHE*DFRS).Classifier algorithm of Euclidean distance metric was utilized to solve the compatibility problem.Furthermore,Gabor filter and principal component analysis method were combined to extract features to increase the recognition rate,and the Euclidean distance computation was converted into dot product computation to reduce rounds complexity.The experiments and analysis demonstrate that the scheme can protect privacy with high efficiency and high recognition rate.
作者 陆正福 王欢
出处 《计算机工程与设计》 北大核心 2016年第6期1428-1434,1542,共8页 Computer Engineering and Design
基金 国家自然科学基金项目(10861012) 云南省教育厅科学研究基金项目(09Y0347) 云南大学理(工)科校级科研基金项目(YNUY201368) 云南大学中青年骨干教师培养计划专项经费基金项目(XT412003)
关键词 全同态加密 分布式人脸识别 体系结构设计 协议设计 算法设计 fully homomorphic encryption distributed face recognition architecture design protocol design algorithm design
  • 相关文献

参考文献18

  • 1Bringer J, Chabanne H, Patey A. Privacy-preserving biometrie iden- tification using secure multiparty computation: An overview and recent trends [J]. Signal Processing Magazine, 2013:30 (2): 42-52.
  • 2Gentry C. Fully homomorphic encryption using ideal lattices [C] //41st ACM Symposium on Theory of Computing, 2009:169-178.
  • 3Erkin Z, Franz M, Guajardo J, et al. Privacy-preserving face recognition [G]. LNCS 5672: Privacy Enhancing Technolo- gies. Heidelberg: Springer Berlin Heidelberg, 2009: 235-253.
  • 4Sadeghi AR, Schneider T, Wehrenberg I. Efficient privacy- preserving face recognition [G]. LNCS 5984: Information, Security and Cryptology-ICISC 2009. Heidelberg: Springer Berlin Heidelberg, 2010: 229-244.
  • 5Osadchy M, Pinkas B, Jarrous A, et al. Scifi-a system for se- cure face identification [-C] //IEEE Symposium on Security and Privacy, 2010: 239-254.
  • 6毋立芳.一种基于加密人脸的匿名身份认证方法和系统[P].中国:201010522427.X,2012-07-04.
  • 7Troncoso-Pastoriza JR, P6rez-Gonzdlez F. Fully homomorphic faces [C] //19th IEEE International Conference on Image Pro- cessing, 2012: 2657-2660.
  • 8Troncosc-Pastoriza JR, Gonzalez-Jimenez D, Perez-Gonzalez F. Fully private noninteractive face verification [J]. IEEE Tran- sactions on Information Forensics and Security, 2013, 8 (7): 1101-1114.
  • 9Mythri S, Meenakshi Sundaram. Secure computation of face identification-SCiFI [J]. International Journal of Innovative Re- search in Advanced Engineering, 2014, 1 (4): 118-125.
  • 10FrankBusehmann.面向模式的软件架构(卷1):模式系统[M].袁国忠,译.北京:人民邮电出版社,2013:103-127.

二级参考文献14

  • 1Tuytelaars T,Mikolajczyk K. Local invariant feature detectors:a survey [J]. Foundations and Trends in Computer Graphics andVision,2008,3(3):177 - 280.
  • 2Mikolajczyk K, Schmid C. Scale and affine invariant interestpoint detectors [ J ]. International Journal of Computer Vision,2004,60(1):63 - 86.
  • 3Lowe D. Distinctive image features from scale-invariant key-points[ J]. International Journal of Computer Vision, 2004,60(2):91- 110.
  • 4Bay H, Ess A,et al. Speeded-up robust features (SURF) [ J].International Journal on Computer Vision and Image Under-standing, 2008,110(3) :346 - 359.
  • 5Lindeberg T. Feature detection with automatic scale selection[J]. International Journal of Computer Vision, 1998,30(2) :79-116.
  • 6Heitger F,Rosenthaler L, et al. Simulation of neural contourmechanisms: from simple to end-stopped cells [j]. Vision Re-search, 1992,32(5) :963 - 981.
  • 7Wiiitz P,Lourens T. Comer detection in color images through amultiscale combination of end-stopped cortical cells [j]. Imageand Vision Computing,2000,18(6) :531 - 541.
  • 8Rodrigues J,Buf H. Multi-scale cortical keypoint representationfor attention and object detection[ A]. Proc of 2nd Iberian Con-ference on Pattern Recognation and Image Analysis [ C].Berlin : Springer,2005.255 - 262.
  • 9Csapo A,Roka A,Baranyi P. Visual cortex inspired vertex andcomer detection[A]. Proc of IEEE International Conference onMechatronics[ C]. Budapest : IEEE,2006.551 - 556.
  • 10Hubei D,Wiesel T.Receptive fields,binocular interaction andfunctional architecture in the cat’s visual cortex[J] .The Jour-nal of Hiysiology, 1962,160( 1) : 106- 154.2.

共引文献22

同被引文献2

引证文献2

二级引证文献12

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部