期刊文献+

基于FPGA的射频层析成像目标位置快速求解算法

Fast solving algorithm for RTI target location based on FPGA
下载PDF
导出
摘要 基于射频层析成像算法的免携带设备目标定位需要花费较长时间求解目标位置,难以满足实时性要求高的场合,为此设计一种基于FPGA的目标位置快速求解算法。对目标位置的求解进行优化,将直接求解转化为线性方程组的求解,验证线性方程组系数矩阵的对称正定性,设计基于FPGA平台的系数矩阵和列矩阵更新模块。与PC平台相比,在处理相同分辨率的射频层析成像算法时,该算法能够提高射频层析成像定位算法求解目标位置的计算速度,满足实时性要求。 Object device-free localization based on radio tomographic imaging(RTI)algorithm need to consume a long time to solve the image of target position,which is difficult to meet the high real-time requirements.Hence,a fast solving method for target localization based on field programmable gate array(FPGA)was designed.The direct solving of target position was optimized and the direct calculating target position was converted into solving the linear equations of the positioning system.The symmetric positive definiteness(SPD)of the coefficient matrix was proved.A fast coefficient updating method was applied to design the FPGA function block.By comparing with PC platform,the proposed system can improve the calculation speed greatly and satisfy the requirement of real-time.
出处 《计算机工程与设计》 北大核心 2016年第6期1490-1494,共5页 Computer Engineering and Design
基金 国家自然科学基金项目(71371092)
关键词 射频层析成像 无线传感器网络 现场可编程门阵列 目标定位 实时性 radio tomographic imaging(RTI) wireless sensor networks FPGA target localization real-time
  • 相关文献

参考文献14

  • 1Saeed A, Kosba AE, Yousse M f. Ichnaea a low overhead ro- bust WLAN device free passive localization system [J]. IEEE J Sel Topics Signal Process, 2013, 8 (1): 5-15.
  • 2Wilson J, Patwari N. Radio tomographic imaging with wireless networks [J]. IEEE Trans Mobile Computing, 2010, 9 (5) : 621-632.
  • 3Martin R K, Anderson C, Thomas R W, et al. Modelling and analysis of radio tomography [C] //Proc 4th IEEE Internatio- nal Workshop on Computational Advances in Multi-Sensor Adaptive Processing, 2011: 377-380.
  • 4Kaltiokallio O, Bocca M, Patwari N. Enhancing the accuracy of radio tomographie imaging using channel diversity [C] //Proc 9th IEEE Int Conf Mobile Ad Hoc Sensor Systems, 2012: 254-262.
  • 5Wilson J, Patwari N. See through walls: Motion tracking using variance-based radio tomography networks [J]. IEEE TransMobile Computing, 2011, 10 (5): 612-621.
  • 6Zhao Y, Patwari N, Phillips JM, et al. Radio tomographic imaging and tracking of stationary and moving people via kernel distance [C] //Proc 12th Int Conf IPSN, 2013: 229-240.
  • 7郝晓曦,杨志勇,郭雪梅,王国利.BCS实现的射频层析成像链路选择方法[J].电子学报,2013,41(12):2507-2512. 被引量:5
  • 8Wilson J, Patwari N. A fade-level skew-Laplace signal strength model for device-free localization with wireless net- works [J]. IEEE Trans Mobile Computing, 2012, 11 (6): 947-958.
  • 9Kaltiokallio O, Bocca M, Patwari N. A fade level-based spa- tial model for radio tomographic imaging [J]. IEEE Trans Mo- bile Computing, 2014, 13 (6): 1159-1172.
  • 10Yang D P, Peterson G D, Li H S, et al. An FPGA imple- mentation for solving least square problem [C] //Proceeding of FCCM, 2009: 223-226.

二级参考文献40

  • 1李炯生.实方阵的正定性[J].数学的实践与认识,1985,3:67-67.
  • 2BERGMANN N W,SUTTON P R.A high performance computing module for a low earth orbit satellite using reconfigurable logic[J].Lecture Notes in Computer Sci-ence,1998,14(82):416-420.
  • 3ZHANG W,BETZ V,ROSE J.Portable and scalable FPGA-based acceleration of a direct linear system solver[C].Proceeding of FPT2008,2008:17-24.
  • 4YANG D P,PETERSON G D,LI H SH,et al.An FP-GA implementation for solving least square problem[C].In Proceeding of FCCM2009,2009:223-226.
  • 5SUN J,PETERSON G D,STORASLI O.High-perform-ance mixed-precision linear solver for FPGAs[J].IEEE Transaction on Computers,2008,57(12):1614-1623.
  • 6BURDEN R L.Numerical analysis[M].Thomson Brooks/Cole,2006.
  • 7BAKOS J D,NAGAR K K.Exploiting matrix symmetry to improve FPGA accelerated conjugate gradient[C].Proceeding of FCCM2009,2009:223-226.
  • 8WU G M,DOU Y,PETERSON G D.Blocking LU de-composition for FPGAs[C].Proceeding of FCCM2010,2010:211-214.
  • 9ZHUO L,PRASANNA V K.High-performance and pa-rameterized matrix factorization on FPGAs[C].Proceed-ing of FPL2006,2006:1-6.
  • 10SUYKENS J,VANDEWALLE J.Least square support vector machine classifiers[J].Neural Processing Let-ters,1999,9(3):293-300.

共引文献27

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部