期刊文献+

基于粗糙集的多分类器集成学习算法 被引量:4

Multiple classifiers ensemble learning algorithm based on rough set theory
下载PDF
导出
摘要 为将粗糙集理论与集成学习进行有效的结合,提高多分类器集成的分类性能,提出一种结合粗糙集的多分类器集成学习算法。根据粗糙集理论,将样本划分为正区域和边界域两部分,在此基础上进行样本抽样;抽样过程中,确保抽样的每个数据集都包括边界域内的所有样本。在UCI数据集上的实验结果表明,相比一些经典的集成算法,该算法在Precision、Recall等多个指标上提高了对数据分类的准确度。 To combine the rough sets theory and ensemble learning more effectively and improve the classification performance of multiple classifier ensembles,a multiple classifier ensemble learning algorithm combining rough set with ensemble learning was proposed.Based on rough set theory,samples were divided into positive region and boundary region,which was useful for training data sampling.During the sampling process,all samples within the boundaries were included in each sampling data set.Experimental results on UCI data set indicate that the proposed algorithm can get better performance as for precision and recall compared to traditional methods.
作者 胡峰 程欣怡
出处 《计算机工程与设计》 北大核心 2016年第6期1610-1616,共7页 Computer Engineering and Design
基金 国家自然科学基金项目(61309014 61379114) 重庆市基础与前沿研究计划基金项目(cstc2013jcyjA40063)
关键词 粗糙集 正区域 边界域 集成学习 分类器 rough set positive region boundary region ensemble learning classifier
  • 相关文献

参考文献16

  • 1Nie Q, Jin L, Fei S, et al. Neural network for multi-class classification by boosting composite stumps [J]. Neurocompu- ting, 2015, 149: 949-956.
  • 2Sun Q, Pfahringer B. Bagging ensemble selection [G]. LNCS 7106: Advances in Artificial Intelligence-24th Australasian Joint Conference, 2011: 251-260.
  • 3Liu Z, Yang Z, Liu S, et al. A novel random subspaee me- thod for online writeprint identification [J]. Journal of Compu- ters, 2012, 7 (12): 2997-3004.
  • 4Ozcift A, Gulten A. A robust multi-class feature selection strategy based on rotation forest ensemble algorithm for diagno- sis of erythemato-squamous diseases [J]. Journal of Medical Systems, 2012, 36 (2): 941-949.
  • 5侯勇,郑雪峰.最大间隔集成学习算法与应用[J].计算机工程与设计,2013,34(4):1504-1509. 被引量:1
  • 6薛梅,郑全弟.基于差异性度量的多分类器集成系统设计[J].计算机工程与设计,2010,31(23):5104-5107. 被引量:2
  • 7Liu Y, Huang W, Jiang Y, et al. Quick attribute reduct algo- rithm for neighborhood rough set model [J ]. Information Sciences, 2014, 271 (7): 65-81.
  • 8杨传振,朱玉全,陈耿.一种基于粗糙集属性约简的多分类器集成方法[J].计算机应用研究,2012,29(5):1648-1650. 被引量:7
  • 9Zhao H. Intrusion detection ensemble algorithm based on bag- ging and neighborhood rough set [J]. International Journal of Security and Its Applications, 2013, 7 (5): 193-204.
  • 10Guo Y, Jiao L, Wang S, et al. A novel dynamic rough sub- space based selective ensemble [J]. Pattern Recognition, 2015, 48 (5)I 1638-I652.

二级参考文献62

共引文献31

同被引文献53

引证文献4

二级引证文献24

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部